Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method

Renewable Energy - Tập 94 - Trang 629-636 - 2016
Shouxiang Wang1, Na Zhang2, Lei Wu3, Yamin Wang3
1Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
2Hulunbuir University, Hailaer 021008, China
3Electrical and Computer Engineering Department, Clarkson University, Potsdam, NY 13699, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Landberg, 1998, A mathematical look at a physical power prediction model, Wind Energy, 1, 23, 10.1002/(SICI)1099-1824(199809)1:1<23::AID-WE9>3.0.CO;2-9

Hong, 1998, Evaluation of the high-resolution model forecasts over the Taiwan area during GIMEX, Weather Forecast., 18, 23

Milligan, 2004, Statistical wind power forecasting for U.S. wind farms

El-Fouly, 2006, Grey predictor for wind energy conversion systems output power prediction, IEEE Trans. Power Syst., 21, 1450, 10.1109/TPWRS.2006.879246

Kariniotakis, 1996, Wind power forecasting using advanced neural network models, IEEE Trans. Energy Convers., 11, 762, 10.1109/60.556376

More, 2003, Forecasting wind with neural networks, Mar. Struct., 16, 35, 10.1016/S0951-8339(02)00053-9

Li, 2010, On comparing three artificial neural networks for wind speed forecasting, Appl. Energy, 87, 2313, 10.1016/j.apenergy.2009.12.013

Catalão, 2011, Hybrid wavelet-PSO-ANFIS approach for short-term wind power forecasting in portugal, IEEE Trans. Sust. Energy, 2, 50

Bhaskar, 2012, AWNN-assisted wind power forecasting using feed-forward neural network, IEEE Trans. Sust. Energy, 3, 306, 10.1109/TSTE.2011.2182215

Yang, 2015, Vijay vittal support-vector-machine-enhanced Markov model for short-term wind power forecast, IEEE Trans. Sust. Energy, 6, 791, 10.1109/TSTE.2015.2406814

Monfared, 2009, A new strategy for wind speed forecasting using artificial intelligent methods, Renew. Energy, 34, 845, 10.1016/j.renene.2008.04.017

Tong, 2012, Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal, J. Appl. Geophys., 83, 29, 10.1016/j.jappgeo.2012.05.002

Lei, 2009, Application of the EEMD method to rotor fault diagnosis of rotating machinery, Mech. Syst. Signal Process., 23, 1327, 10.1016/j.ymssp.2008.11.005

Zhou, 2011, Feed-axis gearbox condition monitoring using built-in position sensors and EEMD method, Robot. Comput.-Integr. Manuf., 27, 785, 10.1016/j.rcim.2010.12.001

Lin, 2010, Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan, Geomorphology, 119, 97, 10.1016/j.geomorph.2010.02.021

Huang, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Soc. Lond. A, 454, 903, 10.1098/rspa.1998.0193

Wu, 2009, Ensemble empirical mode decomposition: a noise assisted data analysis method, Adv. Adapt. Data Anal., 1, 1, 10.1142/S1793536909000047

Flandrin, 2004, Empirical mode decomposition as a filter bank, IEEE Sig. Proc. Lett., 11, 112, 10.1109/LSP.2003.821662

Wu, 2004, A study of the characteristics of white noise using the empirical mode decomposition method, Proc. R. Soc. Lond. A, 460, 1597, 10.1098/rspa.2003.1221

Montana, 1989, Training feed Forward neural network using genetic algorithm