Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá nguồn tài nguyên gió ở Vịnh Ba Tư và Biển Oman bằng mô hình mô phỏng số và dữ liệu vệ tinh
Tóm tắt
Mục tiêu của nghiên cứu này là đánh giá các nguồn năng lượng gió ở các vùng ven biển và ngoài khơi của Vịnh Ba Tư và Biển Oman. Một loạt các mô phỏng bằng mô hình Nghiên cứu Thời tiết và Dự báo (WRF) và dữ liệu vệ tinh Được Chéo Hiệu Chỉnh Đa Nền Tảng (CCMP) đã được sử dụng và so sánh với dữ liệu quan sát trong giai đoạn từ năm 2013 đến 2017. Kết quả chỉ ra rằng mô hình WRF đã đánh giá quá cao ở hầu hết các trạm và mô hình CCMP đã đánh giá thấp tốc độ gió trong điều kiện gió mạnh tương đối. Tốc độ gió tối đa và tối thiểu trong Vịnh Ba Tư xảy ra ở phía đông nam và phía tây bắc, tương ứng. Tốc độ gió tối đa trên Biển Oman xảy ra ở phía đông bắc, trung tâm và phía đông nam của nó. Năng lượng gió tối đa có thể khai thác được từ Biển Oman, đặc biệt là ở các vùng phía đông và cũng, ở một số vùng ven biển của Vương quốc Oman.
Từ khóa
#Năng lượng gió #Vịnh Ba Tư #Biển Oman #mô hình mô phỏng số #dữ liệu vệ tinh.Tài liệu tham khảo
Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS (2014) Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast. Remote Sens Environ 152:480–492
Carvalho D, Rocha A, Gómez-Gesteira M, Santos CS (2017) Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys—a comparative study for the Iberian Peninsula Atlantic coast. Renew Energy 102:433–444
Chang R, Zhu R, Badger M, Hasager CB, Zhou R, Ye D, Zhang X (2014) Applicability of synthetic aperture radar wind retrievals on offshore wind resources assessment in Hangzhou Bay, China. Energies 7(5):3339–3354
Charabi Y, Al Hinai A, Al-Yahyai S, Al Awadhi T, Choudri BS (2019) Offshore wind potential and wind atlas over the Oman Maritime Zone. Energ Ecol Environ 4(1):1–14
de Linaje NGA, Mattar C, Borvarán D (2019) Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile. Energy 188:116027
Dong C, Huang GG, Cheng G (2021) Offshore wind can power Canada. Energy 236:121422
Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two–dimensional model. J Atmos Sci 46:3077–3107
Ek MB, Mitchell KE, Lin Y, Rogers E, Grummann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model. J Geophys Res 108:8851
Elliott DL, Holladay CG, Barchet WR, Foote HP, Sandusky WF (1987) Wind energy resource atlas of the United States. NASA STI/Recon Tech Rep 87:24819
Emeis S (2001) Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol Z 10(2):141–150
Esteban MD, Diez JJ, López JS, Negro V (2011) Why offshore wind energy? Renew Energy 36(2):444–450
Ghafarian P, Pegahfar N, Mohammadpour Penchah MR (2019) Simulation of the surface wind field by the WRF model in Oman Sea region with different initial and boundary conditions. J Earth Space Phys 45(1):197–209
Gholami S, Ghader S, Khaleghi-Zavareh H, Ghafarian P (2021) Sensitivity of WRF-simulated 10 m wind over the Persian Gulf to different boundary conditions and PBL parameterization schemes. Atmos Res 247:105147
Hasager CB, Peña A, Christiansen MB, Astrup P, Nielsen M, Monaldo F, Thompson D, Nielsen P (2008) Remote sensing observation used in offshore wind energy. IEEE J Sel Top Appl Earth Obs Remote Sens 1(1):67–79
Hasager CB, Hahmann AN, Ahsbahs T, Karagali I, Sile T, Badger M, Mann J (2020) Europe’s offshore winds assessed with synthetic aperture radar, ASCAT and WRF. Wind Energy Sci 5(1):375–390
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049
Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac J Atmos Sci 42(2):129–151
Janjic ZI (1994) The step–mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945
Jimenez B, Durante F, Lange B, Kreutzer T, Tambke J (2007) Offshore wind resource assessment with WAsP and MM5: comparative study for the German Bight. Wind Energy 10(2):121–134
Karagali I, Peña A, Badger M, Hasager CB (2014) Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy 17(1):123–140
Kibona TE (2020) Application of WRF mesoscale model for prediction of wind energy resources in Tanzania. Sci Afr 7:e00302
Kumar R, Stallard T, Stansby PK (2017) Assessment of WRF prediction of velocity profile and turbulence intensity by comparison to field measurement. In: The 27th International Ocean and Polar Engineering Conference. San Francisco, California, USA, June 2017
Kumar R, Stallard T, Stansby PK (2021) Large-scale offshore wind energy installation in northwest India: assessment of wind resource using weather research and forecasting and levelized cost of energy. Wind Energy 24(2):174–192
Lee JA, Doubrawa P, Xue L, Newman AJ, Draxl C, Scott G (2019) Wind resource assessment for Alaska’s offshore regions: validation of a 14-year high-resolution WRF data set. Energies 12(14):2780
Mahmoodi K, Ghassemi H, Razminia A (2020) Wind energy potential assessment in the Persian Gulf: a spatial and temporal analysis. Ocean Eng 216:107674
Mahmoodi K, Saybani M, Azad ST (2022) A temporal and spatial resolution wind and wave power resource assessment in the Oman Gulf. Ocean Eng 249:110881
Mattar C, Borvarán D (2016) Offshore wind power simulation by using WRF in the central coast of Chile. Renew Energy 94:22–31
Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682
Nezhad MM, Neshat M, Piras G, Garcia DA (2022) Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies. Renew Sustain Energ Rev 168:112791
Nie B, Li J (2018) Technical potential assessment of offshore wind energy over shallow continent shelf along China coast. Renew Energy 128:391–399
Ohsawa T, Kato M, Uede H, Shimada S, Takeyama Y, Ishihara T (2016) Investigation of WRF configuration for offshore wind resource maps in Japan. Proceedings of the Wind Europe Summit, Hamburg Messe, Hamburg, Germany: 27–29
Olauson J (2018) ERA5: The new champion of wind power modelling? Renew Energy 126:322–331
Perrone TJ (1979) Winter shamal in the Persian Gulf. Naval Environmental Prediction Research Facility Monterey CA
Rehman S, Halawani TO (1994) Statistical characteristics of wind in Saudi Arabia. Renew Energy 4(8):949–956
Reynolds RM (1993) Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—results from the Mt Mitchell expedition. Mar Pollut Bull 27:35–59
Ricciardulli L (2017) The climate data guide: CCMP: cross-calibrated multi-platform wind vector analysis. Retrieved from https://climatedataguide.ucar.edu/climatedata/ccmp-cross-calibrated-multi-platformwind-vector-analysis. Accessed 27 Feb 2017
Rose S, Apt J (2015) What can reanalysis data tell us about wind power? Renew Energy 83:963–969
Saket A, Etemad-Shahidi A (2012) Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renew Energy 40(1):90–97
Salvação N, Soares CG (2018) Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 145:276–287
Sharp E, Dodds P, Barrett M, Spataru C (2015) Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information. Renew Energy 77:527–538
Skamarock WC, Klemp JB, Dudhia J, Gill DO, Liu Z, Berner J, Wang W, Powers JG, Duda MG, Barker DM, Huang XY (2019) A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145
Soukissian T (2013) Use of multi-parameter distributions for offshore wind speed modeling: the Johnson SB distribution. Appl Energy 111:982–1000
Ulazia A, Sáenz J, Ibarra-Berastegui G, González-Rojí SJ, Carreno-Madinabeitia S (2017) Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean. Appl Energy 208:1232–1245
Wang YH, Walter RK, White C, Farr H, Ruttenberg BI (2019) Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast. Renew Energy 133:343–353
Zhou RW, He XF, Zhu R, Cheng X (2010) Numerical simulation of the development potential of wind energy resources over China’s offshore areas. Resour Sci 32(8):1434–1443