Wind-pattern circulation as a palaeogeographic indicator: Case study of the 1.5–1.6 Ga Mangabeira Formation, São Francisco Craton, Northeast Brazil

Precambrian Research - Tập 298 - Trang 1-15 - 2017
M.B. Bállico1, C.M.S. Scherer1, N.P. Mountney2, E.G. Souza1, F. Chemale3, S.A. Pisarevsky4, A.D. Reis1
1Universidade Federal do Rio Grande do Sul – Instituto de Geociências, 9500 Bento Gonçalves Avenue, 91501-970 Porto Alegre, Brazil
2Fluvial & Eolian Research Group, School of Earth and Environment, University of Leeds, LS2 9JT, UK
3Universidade do Vale dos Sinos – Programa de Pós-Graduação em Geologia, 950 Unisinos Avenue, 93022-000 São Leopoldo, Brazil
4Earth Dynamics Research Group, ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, WA 6845, Australia

Tài liệu tham khảo

Alkmim, 2012, Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil, Marine Petrol. Geol., 33, 127, 10.1016/j.marpetgeo.2011.08.011 Al-Masrahy, 2015, A classification scheme for fluvial–aeolian system interaction in desert-margin settings, Aeolian Res., 17, 67, 10.1016/j.aeolia.2015.01.010 Almeida, 1977, O Cráton do São Francisco, Rev. Bras. Geociências, 7, 349, 10.25249/0375-7536.1977349364 Babinski, M., Pedreira, A.J., Brito Neves, B.B., Van Schmus, W.R., 1999. Contribuição à geocronologia da Chapada Diamantina. In: Pedreira, A.J. (Ed.). VII Simpósio Nacional de Estudos Tectônicos. Brazilian Geological Society, pp. 118–120. Bállico, 2017, Drying-upward cycles in a Mesoproterozoic aeolian erg-margin succession: Mangabeira Formation, Espinhaço Supergroup, Brazil, Sed. Geol., 349, 1, 10.1016/j.sedgeo.2016.12.008 Barbosa, 2004, Palaeoproterozoic dome-forming structures related to granulite-facies metamorphism, Jequié block, Bahia, Brazil: petrogenetic approaches, Precambr. Res., 135, 105, 10.1016/j.precamres.2004.08.002 Biswas, 2005, Coarse aeolianites: sand sheets and zibar-interzibar facies from the Mesoproterozoic Cuddapah Basin, India, Sed. Geol., 174, 149, 10.1016/j.sedgeo.2004.11.005 Bose, 1999, Recognition of ancient eolian longitudinal dunes; a case study in upper Bhander Sandstone, Son Valley, India, J. Sediment. Res., 69, 74, 10.2110/jsr.69.74 Brookfield, 1977, The origin of bounding surfaces in ancient aeolian sandstones, Sedimentology, 24, 303, 10.1111/j.1365-3091.1977.tb00126.x Chakraborty, 1991, Sedimentology of a Proterozoic erg: the Venkarpur Sandstone, Pranhita-Godavari Valley, South India, Sedimentology, 38, 301, 10.1111/j.1365-3091.1991.tb01262.x Chakraborty, 1993, Morphology, internal structure and mechanics of small longitudinal (seif) dunes in an aeolian horizon of the Proterozoic Dhandraul Quartzite, India, Sedimentology, 40, 79, 10.1111/j.1365-3091.1993.tb01092.x Chakraborty, 1993, Fluvial-aeolian interactions in a Proterozoic alluvial plain: example from the Mancheral Quartzite, Sullavai Group, Pranhita-Godavari Valley, India. Geol, Soc. London Spec. Publ., 72, 127, 10.1144/GSL.SP.1993.072.01.12 Chan, M.A., Archer, A.W., 2000. Cyclic eolian stratification on the Jurassic Navajo Sandstone, Zion National Park; periodicities and implications for paleoclimate. In: Sprinkel, D.A., Chidsey Jr., T.C., Anderson, P.B., (Eds.) Geology of Utah’s Parks and Monuments, Utah Geological Association Publication 28, pp. 606–617. Charney, 1975, Dynamics of deserts and drought in the Sahel, Q. J. R. Meteorol. Soc., 101, 193, 10.1002/qj.49710142802 Chemale, 2012, Unravelling a Proterozoic basin history through detrital zircon geochronology: the case of the Espinhaço Supergroup, Minas Gerais, Brazil, Gondwana Res., 22, 200, 10.1016/j.gr.2011.08.016 Clemmensen, 1988, Aeolian morphology preserved by lava cover, the Precambrian Mussartût Member, Eriksford Formation, South Greenland, Bull. Geol. Soc. Denmark, 37, 105, 10.37570/bgsd-1988-37-09 Cook, 2003, Role of continents in driving the Hadley cells, J. Atmos. Sci., 60, 957, 10.1175/1520-0469(2003)060<0957:ROCIDT>2.0.CO;2 Corrêa-Gomes, 2000, Radiating 1.0 Ga mafic dyke swarms of eastern Brazil and western Africa: evidence of post-assembly extension in the Rodinia Supercontinent?, Gondwana Res., 3, 325, 10.1016/S1342-937X(05)70291-4 Cruz, 2006, The tectonic interaction between the Paramirim Aulacogen and the Araçuaí Belt, São Francisco Craton region, Eastern Brazil, Anais da Acadêmia Brasileira de Ciências, 78, 151, 10.1590/S0001-37652006000100014 D'Agrella Filho, 1996, Paleomag- netism of Precambrian rocks from Gabon, Congo craton, Africa, J. Afr. Earth Sc., 22, 65, 10.1016/0899-5362(95)00123-9 Danderfer, 2009, New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton-Brazil, Precambr. Res., 170, 116, 10.1016/j.precamres.2009.01.002 Deckart, 1998, New time constraints on dyke swarms related to the Paraná-Etendeka magmatic province, and subsequent South Atlantic opening, southeastern Brazil, J. Volcanol. Geoth. Res., 80, 67, 10.1016/S0377-0273(97)00038-3 Deynoux, 1989, Late Proterozoic periglacial aeolian deposits on the West African Platform, Taoudeni Basin, western Mali, Sedimentology, 36, 531, 10.1111/j.1365-3091.1989.tb02084.x Eriksson, 1998, Controls on spatial and temporal distributions of Precambrian eolianites, Sed. Geol., 120, 275, 10.1016/S0037-0738(98)00036-0 Eriksson, 2000, Muddy roll-up structures in clastic playa beds of the c. 1.8 Ga Waterberg Group, South Africa, Palaios, 15, 177, 10.1669/0883-1351(2000)015<0177:MRUSIS>2.0.CO;2 Eriksson, 2013, Secular changes in sedimentation systems and sequence stratigraphy, Gondwana Res., 24, 468, 10.1016/j.gr.2012.09.008 Ernst, 2013, Mesoproterozoic intraplate magmatic “barcode” record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110Ma and implications for Nuna (Columbia) supercontinent reconstructions, Precambr. Res., 230, 103, 10.1016/j.precamres.2013.01.010 Evans, 2013, Reconstructing pre-Pangean supercontinents, Geol. Soc. Am. Bull., 125, 1735, 10.1130/B30950.1 Feybesse, 1998, The West Central African belt: a model of 2.5–2.0 Ga accretion and two-phase orogenic evolution, Precambr. Res., 87, 161, 10.1016/S0301-9268(97)00053-3 Fryberger, 1988, Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments, Sed. Geol., 55, 1, 10.1016/0037-0738(88)90087-5 Fryberger, 1992, Aeolian granule ripple deposits, Namibia, Sedimentology, 39, 319, 10.1111/j.1365-3091.1992.tb01041.x Gasse, 2004, Late Quaternary hydrologic changes in the arid and semiarid belt of northern Africa: Implications for past atmospheric circulation, 313 Guadagnin, 2015, Detrital zircon record of the Paleoproterozoic to Mesoproterozoic cratonic basins in the São Francisco Craton, J. S. Am. Earth Sci., 60, 104, 10.1016/j.jsames.2015.02.007 Guadagnin, 2015, Sedimentary petrology and detrital zircon U – Pb and Lu – Hf constraints of Mesoproterozoic intracratonic sequences in the Espinhaço Supergroup: implications for the Archean and Proterozoic evolution of the São Francisco Craton, Precambr. Res., 266, 227, 10.1016/j.precamres.2015.05.027 Guadagnin, 2015, Age constraints on crystal-tuff from the Espinhaço Supergroup – insight into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo-São Francisco Craton, Gondwana Res., 27, 363, 10.1016/j.gr.2013.10.009 Guimarães, J.T., Santos, R.A., Melo, R.C., 2008. Geologia da Chapada Diamantina Ocidental (Projeto Ibitiara – Rio de Contas). Salvador, Companhia Baiana de Pesquisa Mineral – CPRM. Série Arquivos Abertos 31, 64p. Heness, 2014, Evidence for climate shifts in the ∼2.0 Ga upper Makgabeng Formation erg, South Africa, Palaeogeogr. Palaeoclimatol. Palaeoecol., 409, 265, 10.1016/j.palaeo.2014.05.016 Hoffman, 1997, Tectonic genealogy of North America, 459 Hunter, 1977, Basic types of stratification in small eolian dunes, Sedimentology, 24, 361, 10.1111/j.1365-3091.1977.tb00128.x Hunter, 1983, Interpreting cyclic crossbedding, with an example from the Navajo Sandstone.pdf, 429 Jackson, 1990, Facies and sequence stratigraphic analysis in an intracratonic, thermal-relaxation basin: the Early Proterozoic, Lower Quilalar Formation and Ballara Quartzite, Mount Isa Inlier, Australia, Sedimentology, 37, 1053, 10.1111/j.1365-3091.1990.tb01846.x Janasi, 2011, The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: a precise U-Pb baddeleyite/zircon age for a Chap- ecó-type dacite, Earth Planet. Sci. Lett., 302, 147, 10.1016/j.epsl.2010.12.005 Kocurek, 1981, ERG reconstruction: the entrada sandstone (Jurassic) of northern Utah and Colorado, Palaeogeogr. Palaeoclimatol. Palaeoecol., 36, 125, 10.1016/0031-0182(81)90054-7 Kocurek, 1996, Desert aeolian systems, 125 Kocurek, 1999, The Aeolian Rock Record (Yes, Virginia, it Exists, But it Really is Rather Special to Create One), 239 Kocurek, 1982, Adhesion structures, J. Sediment. Res., 52, 1229 Kocurek, G., Havholm, K.G., 1993. Eolian sequence stratigraphy – a conceptual framework. In: Weimer, P., Posamentier, H., (Eds.), Siliclastic Sequence Stratigraphy, AAPG Memoir 58, pp. 393–409. Kocurek, 1986, Conditions favourable for the formation of warm-climate aeolian sand sheets, Sedimentology, 33, 795, 10.1111/j.1365-3091.1986.tb00983.x Kocurek, 1991, Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania, Sedimentology, 38, 751, 10.1111/j.1365-3091.1991.tb01018.x Kocurek, 2007, White Sands Dune Field, New Mexico: age, dune dynamics and recent accumulations, Sed. Geol., 197, 313, 10.1016/j.sedgeo.2006.10.006 Langford, 1989, Fluvial–aeolian interactions: part I. Modern systems, Sedimentology, 36, 1023, 10.1111/j.1365-3091.1989.tb01540.x Langford, 1989, Fluvial-aeolian interactions: Part II, ancient systems, Sedimentology, 36, 1037, 10.1111/j.1365-3091.1989.tb01541.x Li, 2008, Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambr. Res., 160, 179, 10.1016/j.precamres.2007.04.021 Loope, 2001, Annual monsoon rains recorded by Jurassic dunes, Nature, 412, 64, 10.1038/35083554 Loope, 2004, Tropical westerlies over Pangaean sand seas, Sedimentology, 51, 315, 10.1046/j.1365-3091.2003.00623.x Lundmark, 2016, The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia, Precambr. Res., 275, 197, 10.1016/j.precamres.2016.01.003 Magalhães, 2015, Sequence hierarchy in aMesoproterozoic interior sag basin: frombasin fill to reservoir scale, the Tombador Formation, Chapada Diamantina Basin, Brazil, Basin Res., 28, 393, 10.1111/bre.12117 McGee, 2014, Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene, Earth Planet. Sci. Lett., 390, 69, 10.1016/j.epsl.2013.12.043 Meert, 2002, Paleomagnetic evidence for a Paleo-Mesoproterozoic Supercontinent Columbia, Gondwana Res., 5, 207, 10.1016/S1342-937X(05)70904-7 Miall, 1977, A review of the braided-river depositional environment, Earth-Sci. Rev., 13, 1, 10.1016/0012-8252(77)90055-1 Miall, 1996, 582 Miall, 2006 Milana, 2009, Largest wind ripples on Earth?, Geology, 37, 343, 10.1130/G25382A.1 Mountney, 2006, Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA, Sedimentology, 53, 789, 10.1111/j.1365-3091.2006.00793.x Mountney, 2004, Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone, SE Utah, USA, Sedimentology, 51, 713, 10.1111/j.1365-3091.2004.00646.x Mountney, 2002, Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation, Cheshire Basin, UK, Sedimentology, 49, 805, 10.1046/j.1365-3091.2002.00472.x Mountney, 1998, Aeolian and alluvial deposition within the Mesozoic Etjo Sandstone Formation, northwest Namibia, J. Afr. Earth Sci., 27, 175, 10.1016/S0899-5362(98)00056-6 Owen, 2003, Load structures: gravity-driven sediment mobilization in the shallow subsurface, 21 Paim, 2007, High-resolution stratigraphy and depositional model of wind- and water-laid deposits in the ordovician Guaritas rift (Southernmost Brazil), Sed. Geol., 202, 776, 10.1016/j.sedgeo.2007.09.003 Park, 2011, The mechanical impact of the Tibetan plateau on the seasonal evolution of the South Asian monsoon, J. Clim., 25, 2394, 10.1175/JCLI-D-11-00281.1 Parrish, 1993, Climate of the Supercontinent Pangea, J. Geol., 101, 215, 10.1086/648217 Parrish, 1988, Wind directions predicted from global circulation models and wind directions determined from aeolian sandstones of the western United States, Sed. Geol., 56, 261, 10.1016/0037-0738(88)90056-5 Pedreira, 1994 Pedreira, 2008, Contemporaneous evolution of the Palaeoproterozoic-Mesoproterozoic sedimentary basins of the São Francisco-Congo Craton, Geol. Soc. London Spec. Publ., 294, 33, 10.1144/SP294.3 Pedrosa-Soares, 2001, The Araçuaí-West-Congo Orogen in Brazil: an overview of a confined orogen formed during Gondwanaland assembly, Precambr. Res., 110, 307, 10.1016/S0301-9268(01)00174-7 Pesonen, 2003, Palaeomagnetic configuration of continents during the Proterozoic, Tectonophysics, 375, 289, 10.1016/S0040-1951(03)00343-3 Peterson, 1988, Pennsylvanian to Jurassic eolian transportation systems in the western United States, Sed. Geol., 56, 207, 10.1016/0037-0738(88)90055-3 Petrov, 2011, Facies characteristics and terrigenous sedimentation features of the lower Riphean Mukun Group (Anabar Uplift, Siberia), Lithol. Min. Resour., 46, 165, 10.1134/S0024490211020076 Petrov, 2014, The Mukun basin: settings, paleoenvironmental parameters, and factors controlling the early mesoproterozoic terrestrial sedimentation (Lower Riphean section of the Anabar uplift, Siberia), Lithol. Min. Resour., 4649, 55, 10.1134/S0024490214010039 Pisarevsky, 2003, Models of Rodinia assembly and fragmentation, 206, 35 Pisarevsky, 2014, Mesoproterozoic paleogeography: supercontinent and beyond, Precambr. Res., 244, 207, 10.1016/j.precamres.2013.05.014 Pulvertaft, 1985, Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala Sandstone, Sweden, Sed. Geol., 44, 93, 10.1016/0037-0738(85)90034-X Pye, 1990, 396 Rodríguez-López, 2014, Archean to Recent aeolian sand systems and their sedimentary record: current understanding and future prospects, Sedimentology, 61, 1487, 10.1111/sed.12123 Ross, 1983, Proterozoic aeolian quartz arenites from the Hornby Bay Group, Northwest Territories, Canada: implications for precambrian aeolian processes, Precambr. Res., 20, 149, 10.1016/0301-9268(83)90070-0 Rowe, 2007, Inconsistencies between Pangean reconstructions and basic climate controls, Science, 318, 1284, 10.1126/science.1146639 Rubin, D.M., 1987. Cross-Bedding, Bedform and Paleocurrents. Soc. Econ. Paleont. Mineral., Concepts Sedimentol. Paleont., Series 1, pp. 187. Rubin, 1982, Bedform climbing in theory and nature, Sedimentology, 29, 121, 10.1111/j.1365-3091.1982.tb01714.x Sakamoto-Arnold, 1981, Eolian features produced by the December 1977 wind- storm, Southern San Joaquin Valley, California, J. Geol., 89, 129, 10.1086/628568 Scherer, 2000, Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: Morphology and origin, Sed. Geol., 137, 63, 10.1016/S0037-0738(00)00135-4 Scherer, 2007, Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: evidence from aeolian cross-strata of the Botucatu Formation, Brazil, Palaeogeogr. Palaeoclimatol. Palaeoecol., 250, 89, 10.1016/j.palaeo.2007.02.018 Scherer, 2010, Cyclic cross-bedding in the eolian dunes of the Sergi Formation (Upper Jurassic), Recôncavo Basin: inferences about the wind regime, Palaeogeogr. Palaeoclimatol. Palaeoecol., 296, 103, 10.1016/j.palaeo.2010.06.018 Scherer, 2005, Sedimentary cycles and facies architecture of aeolian-fluvial strata of the Upper Jurassic Guará Formation, southern Brazil, Sedimentology, 52, 1323, 10.1111/j.1365-3091.2005.00746.x Schobbenhaus, 1971, Contribuição a estratigrafia da Chapada Diamantina, Bahia Central, Mineração e Metalurgia, 53, 116 Schobbenhaus, 1994, Idade U/Pb do vulcanismo Rio dos Remédios Chapada Diamantina, Bahia, 397 Silveira, 2013, First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications, Lithos, 174, 144, 10.1016/j.lithos.2012.06.004 Simpson, 1993, Thin eolianites interbedded within a fluvial and marine succession: early proterozoic whitworth formation, Mount Isa Inlier, Australia, Sed. Geol., 87, 39, 10.1016/0037-0738(93)90035-4 Simpson, 2002, Eolian dune degradation and generation of massive sandstone bodies in the paleoproterozoic makgabeng formation, waterberg group, South Africa, J. Sediment. Res., 72, 40, 10.1306/050701720040 Simpson, E.L., Bose, P.K., Alkmin, F.F., Rainbird, R., Martins-Neto, M., Bumby, A., Eriksson, P.G., Eriksson, K.A., Middleton, L. Sedimentary dynamics of Precambrian aeolianites. 2004. In: Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O. (Eds.). The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology 12, pp. 642–657. Simpson, 2013, Evidence for 2.0 Ga continental microbial mats in a paleodesert setting, Precambr. Res., 237, 36, 10.1016/j.precamres.2013.08.001 Soegaard, 1994, Late Middle Proterozoic Hazel Formation near Van Horn, Trans-Pecos Texas: evidence for transpressive deformation in Grenvillian basement, Geol. Soc. Am. Bull., 106, 413, 10.1130/0016-7606(1994)106<0413:LMPHFN>2.3.CO;2 Souza, 2012 Stanistreet, 2002, Hoanib River flood deposits of Namib Desert interdunes as analoques for thin permeability barrier mudstone layers in aeolianite reservoirs, Sedimentology, 49, 719, 10.1046/j.1365-3091.2002.00458.x Tirsgaard, 1998, Preservation of pre-vegetational mixed fluvio-aeolian deposits in a humid climatic setting: an example from the Middle Proterozoic Eriksfjord Formation, Southwest Greenland, Sed. Geol., 120, 295, 10.1016/S0037-0738(98)00037-2 Trompette, 1994, 350 Tsoar, 2009, The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil), Quatern. Res., 71, 217, 10.1016/j.yqres.2008.12.001 Webster, 1987, The elementary monsoon, 3 Webster, 2004, The elementary Hadley circulation, 9 Yizhaq, 2008, Aeolian megaripples: mathematical model and numerical simulations, J. Coastal Res., 6, 1369, 10.2112/08A-0012.1 Zhang, 2012, Pre-Rodinia super-continent Nuna shaping up: a global synthesis with new paleomagnetic results from North China, Earth Planet. Sci. Lett., 353–354, 145, 10.1016/j.epsl.2012.07.034 Zhao, 2002, A review of the global 2.1–1.8 Ga orogens: implications for a pre-Rodinian supercontinent, Earth Sci. Rev., 59, 125, 10.1016/S0012-8252(02)00073-9