Wind erosion on the north‐eastern Tibetan Plateau: constraints from OSL and U‐Th dating of playa salt crust in the Qaidam Basin

Earth Surface Processes and Landforms - Tập 39 Số 6 - Trang 779-789 - 2014
Wenxia Han1,2, Zhibang Ma3, Zhongping Lai1,4, Erwin Appel5, Xiaomin Fang6, Lupeng Yu7,4
1Key Laboratory of Salt Lake Resources and Chemistry & Qinghai Institute of Salt Lakes, Chinese Academy of Sciences Xining P. R. China
2State Key Laboratory of Loess and Quaternary Geology, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an, P. R. China
3Key Laboratory of Cenozoic Geology and Environment & Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing P. R. China
4State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, P. R. China
5Fachbereich für Geowissenschaften Universität Tübingen Tübingen Germany
6Key Laboratory of Continental Collision and Plateau Uplift & Institute of Tibetan Plateau Research, Chinese Academy of Sciences Beijing P. R. China
7Qinghai Geological Survey Institute, Xining, China

Tóm tắt

ABSTRACTThe arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

Aitken MJ, 1985, Thermoluminescence Dating, 359

Berger GW, 1980, Isolation of silt‐sized quartz from sediments, Ancient TL, 11, 8

10.1038/316429a0

10.1016/j.gloplacha.2012.07.002

Casas E, 1989, Diagenesis of saline pan halite – comparison of petrographic features of modern, Quaternary and Permian halites, Journal of sedimentary Research, 59, 724

Casas E, 1992, Carnallite mineralization in the nonmarine, Qaidam Basin, China – evidence for the early diagenetic origin of potash evaporates, Journal of sedimentary Research, 62, 881

10.1029/JB093iB10p11667

10.1016/j.gca.2007.04.033

10.1016/j.quascirev.2005.09.011

10.1016/0277-3791(94)90124-4

Evans ME, 2003, Environmental Magnetism: Principles and Applications of Enviromagnetics, 299

10.1016/j.quageo.2009.02.012

10.1002/jqs.2572

10.1130/B25727.1

10.1016/j.epsl.2007.03.042

Gascoyne M, 1982, Uranium Series Disequilibrium Applications to Environmental Problems, 33

10.1111/j.1749‐8198.2006.00003.x

10.4095/215638

Gu S, 1990, Regional Petroleum Geology of Qinghai‐Xizang Oil‐Gas Field

10.1029/2011JD016237

10.1016/j.yqres.2012.05.001

10.1002/9781444303698.ch2

10.1038/300431a0

Hou XH, 2010, Sedimentary characteristics and paleoenvironmental of Dalangtan salt lake in Western Qaidam basin, since 140 ka BP, Acta Geologica Sinica, 84, 1623

Huang HC, 1996, Geology of Qaidam and Petroleum Prediction, 257

10.1130/GSATG99A.1

10.1029/JZ070i016p04039

10.1006/qres.1998.1995

10.1016/0031-0182(89)90143-0

10.1016/j.radmeas.2005.06.031

10.1016/j.jseaes.2009.08.003

10.1016/j.radmeas.2007.08.006

10.1016/j.radmeas.2008.01.022

Laj C, 2007, Geomagnetic excursions, Treatise on Geophysics, 5, 373, 10.1016/B978-044452748-6/00095-X

10.1111/j.1365-246X.1997.tb00938.x

10.1051/0004-6361:20041335

10.1016/j.quaint.2009.12.013

10.1016/0016-7037(96)00136-6

Liu TS, 1985, Loess and the Environment, 251

Liu ZC, 1996, On lower Tertiary chronostratigraphy and climatostratigraphy of Manyai Depression in western Qaidam Basin, Journal of Stratigraphy, 20, 104

10.1016/S0031-0182(98)00048-0

LongH.2011.Late Quaternary Palaeoenvironmental Evolution on the Tibetan Plateau and Adjacent Areas: Timing and Forcing Mechanisms PhD Thesis. Lanzhou University Lanzhou China; 177 pp.

10.1016/j.quageo.2009.05.005

10.1111/j.1365-3091.1985.tb00478.x

10.1126/science.245.4922.1090

LudwigKR.1991.ISOPLOT a Plotting and Regression Program for Radiogenic‐isotope Data US Geological Survey Open‐File Report. US Geological Survey: Reston VA; 88–542.

10.1016/0016-7037(91)90012-T

Ma ZB, 2010, U‐Th isochron dating of impure carbonates and the possible effect of isotopic fractionation during leaching, Acta Geologica Sinica, 84, 1146

Ma NN, 2011, Forming age of surface mirabilite in dalangtan, Qaidam Basin and its environmental significance, Acta Geological Sinica, 85, 433

10.1016/j.quaint.2011.09.012

10.1016/j.yqres.2007.10.013

10.1046/j.1365-246X.1998.00567.x

10.1016/j.quaint.2009.03.002

10.1016/S1350-4487(99)00253-X

10.1016/j.geomorph.2003.09.020

10.1029/2001GL014024

10.1016/0033-5894(78)90036-4

10.1007/BF02900575

10.1130/0016-7606(1993)105<1606:TUACDO>2.3.CO;2

10.1016/1350-4487(94)90086-8

10.1016/j.radmeas.2003.10.001

10.1016/1040-6182(90)90043-4

10.3986/ac.v40i1.25

10.1017/S0263593300020782

10.1029/2000JD900665

10.1016/j.quageo.2009.02.013

Taylor SR, 1985, The Continental Crust: Its Composition and Evolution (An Examination of the Geochemical Record Preserved in Sedimentary Rocks), 312

10.1016/j.quascirev.2008.10.023

10.1007/978-94-011-8036-8

10.1038/371503a0

10.1016/S0146-6380(03)00174-8

10.1016/j.palaeo.2007.06.007

10.1130/B25778.1

10.2110/jsr.2012.76

10.1007/3-540-32344-9_1

Xia WC, 2001, Cenozoic Qaidam Basin, China a stronger tectonic inversed, extensional rifted basin, AAPG Bulletin, 85, 715

10.1016/j.yqres.2009.10.011

10.1130/B26232.1

Yu YD, 2009, Application Guidelines for Reference Materials, 390

10.1016/j.yqres.2012.03.011

10.1007/BF02901916

10.1016/S0012-821X(99)00052-7

10.1016/0012-821X(94)90212-7

Zhu YZ, 1994, The Neotectonic Movement and the Evolution of Saline Lakes of Qaidam Basin in Northwestern China, 133

10.1016/j.palaeo.2006.06.019