Wind Energy: Forecasting Challenges for Its Operational Management
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. <i>J. Amer. Statist. Assoc.</i> <b>102</b> 359–378.
Stroud, J. R., Müller, P. and Sansó, B. (2001). Dynamic models for spatiotemporal data. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>63</b> 673–689.
Gneiting, T., Larson, K., Westrick, K., Genton, M. G. and Aldrich, E. (2006). Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space–time method. <i>J. Amer. Statist. Assoc.</i> <b>101</b> 968–979.
Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L. and Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. <i>TEST</i> <b>17</b> 211–235.
Hering, A. S. and Genton, M. G. (2010). Powering up with space–time wind forecasting. <i>J. Amer. Statist. Assoc.</i> <b>105</b> 92–104.
Zhu, X. and Genton, M. G. (2012). Short-term wind speed forecasting for power system operations. <i>Int. Stat. Rev.</i> <b>80</b> 2–23.
Jeon, J. and Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. <i>J. Amer. Statist. Assoc.</i> <b>107</b> 66–79.
Reikard, G. (2008). Using temperature and state transitions to forecast wind speed. <i>Wind Energy</i> <b>11</b> 431–443.
Bremnes, J. B. (2004). Probabilistic wind power forecasts using local quantile regression. <i>Wind Energy</i> <b>7</b> 47–54.
Hering, A. S. and Genton, M. G. (2011). Comparing spatial predictions. <i>Technometrics</i> <b>53</b> 414–425.
Lau, A. and McSharry, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. <i>Ann. Appl. Stat.</i> <b>4</b> 1311–1341.
Møller, J. K., Nielsen, H. A. and Madsen, H. (2008). Time-adaptive quantile regression. <i>Comput. Statist. Data Anal.</i> <b>52</b> 1292–1303.
Pinson, P. and Madsen, H. (2009). Ensemble-based probabilistic forecasting at Horns Rev. <i>Wind Energy</i> <b>12</b> 137–155.
Pinson, P. and Madsen, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. <i>J. Forecast.</i> <b>31</b> 281–313.
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. <i>Econometrica</i> <b>57</b> 357–384.
Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>69</b> 243–268.
Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>73</b> 423–498.
Nelsen, R. B. (2006). <i>An Introduction to Copulas</i>, 2nd ed. Springer, New York.
Billinton, R. and Allan, R. N. (1984). <i>Reliability Evaluation of Power Systems</i>. Plenum Press, London.
Conejo, A., Carrion, M. and Morales, J. M. (2010). <i>Decision-Making under Uncertainty in Electricity Markets</i>. Springer, New York.
Girard, R. and Allard, D. (2013). Spatio-temporal propagation of wind power forecast errors. <i>Wind Energy</i>. To appear.
Lange, M. and Focken, U. (2006). <i>Physical Approach to Short-Term Wind Power Prediction</i>. Springer, Berlin.
Lau, A. (2011). Probabilistic wind power forecasts: From aggregated approach to spatiotemporal models. Ph.D. thesis, Univ. Oxford, Oxford, UK.
Letcher, T. M. (2008). <i>Future Energy</i>: <i>Improved</i>, <i>Sustainable and Clean Options for Our Planet</i>. Elsevier, Amsterdam.
Manganelli, S. and Engle, R. F. (2004). A comparison of value-at-risk models in finance. In <i>Risk Measures for the</i> 21<i>st Century</i> (G. Szegö, ed.) 123–143. Wiley, Chichester.
Mur Amada, J. and Bayod Rújula, A. (2010). Variability of wind and wind power. In <i>Wind Power</i> (S. M. Muyeen Vukovar, ed.) 289–320. Intech Open, Rijeka, Croatia.
Nielsen, T. S. (2002). Online prediction and control in nonlinear stochastic systems. Ph.D. thesis, Dept. Informatics and Mathematical Modelling, Technical Univ. Denmark.
Raiffa, H. and Schaifer, R. (1961). <i>Applied Statistical Decision Theory</i>. Division of Research, Harvard Business School, Boston.
Weron, R. (2006). <i>Modeling and Forecasting Electricity Loads and Prices</i>: <i>A Statistical Approach</i>. Wiley, New York.
Wolak, F. A. (2013). Regulating competition in wholesale electricity supply. In <i>Economic Regulation and Its Reform</i>: <i>What Have We Learned</i>? (N. L. Rose, ed.). Univ. Chicago Press. To appear.
Zugno, M., Jónsson, T. and Pinson, P. (2013). Trading wind energy based on probabilistic forecasts of both wind generation and market quantities. <i>Wind Energy</i>. <b>16</b> 909–926.
Leutbecher, M. and Palmer, T. N. (2008). Ensemble forecasting. <i>J. Comput. Phys.</i> <b>227</b> 3515–3539.
Bessa, R. J., Miranda, V. and Gama, J. (2009). Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. <i>IEEE T. Power Syst.</i> <b>24</b> 1657–1666.
Bludszuweit, H., Domínguez-Navarro, J. A. and Llombart, A. (2008). Statistical analysis of wind power forecast errors. <i>IEEE T. Power Syst.</i> <b>23</b> 983–991.
Bossavy, A., Girard, R. and Kariniotakis, G. (2013). Forecasting ramps of wind power production with numerical weather prediction ensembles. <i>Wind Energy</i> <b>16</b> 51–63.
Botterud, A., Wang, J., Miranda, V. and Bessa, R. J. (2010). Wind power forecasting in US electricity markets. <i>The Electricity Journal</i> <b>23</b> 71–82.
Brown, B. G., Katz, R. W. and Murphy, A. M. (1984). Time series models to simulate and forecast wind speed and wind power. <i>J. Appl. Meteor.</i> <b>23</b> 1184–1195.
Cliff, A. D. and Ord, J. K. (1984). Space–time modeling with applications to regional forecasting. <i>Trans. Inst. Br. Geogr.</i> <b>66</b> 119–128.
Conradsen, K., Nielsen, L. B. and Prahm, L. P. (1984). Review of Weibull statistics for estimation of wind speed distributions. <i>J. Appl. Meteor.</i> <b>23</b> 1173–1183.
Doherty, R. and O’Malley, M. (2005). A new approach to quantify reserve demand in systems with significant installed wind capacity. <i>IEEE T. Power Syst.</i> <b>20</b> 587–595.
Gallego, C., Costa, A., Cuerva, A., Landberg, L., Greaves, B. and Collins, J. (2013). A wavelet-based approach for large wind power ramp characterisation. <i>Wind Energy</i> <b>16</b> 257–278.
Giacomini, R. and Granger, C. W. J. (2004). Aggregation of space–time processes. <i>J. Econometrics</i> <b>118</b> 7–26.
Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M. and Draxl, C. (2011). The state-of-the-art in short-term prediction of wind power: A literature overview, 2nd ed. Technical report. Available at <a href="orbit.dtu.dk">orbit.dtu.dk</a>.
Gneiting, T. (2010). Quantiles as optimal point forecasts. <i>Int. J. Forecasting</i> <b>27</b> 197–207.
Hahn, H., Meyer-Nieberg, S. and Pickl, S. (2009). Electric load forecasting methods: Tools for decision making. <i>European J. Oper. Res.</i> <b>199</b> 902–907.
Haslett, J. and Raftery, A. E. (1989). Space–time modelling with long-memory dependence: Assessing Ireland’s wind power resource (with discussion). <i>J. R. Stat. Soc. Ser. C Appl. Stat.</i> <b>38</b> 1–50.
Huang, H. C. and Hsu, N. J. (2004). Modeling transport effects on ground-level ozone using a non-stationary space–time model. <i>Environmetrics</i> <b>15</b> 251–268.
Jordà, Ò. and Marcellino, M. (2010). Path forecast evaluation. <i>J. Appl. Econometrics</i> <b>25</b> 635–662.
Joskow, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating technologies. <i>Amer. Econ. Rev.</i> <b>100</b> 238–241.
Kariniotakis, G. N., Stavrakakis, G. S. and Nogaret, E. F. (1996). Wind power forecasting using advanced neural networks models. <i>IEEE T. Energy Conver.</i> <b>11</b> 762–767.
Landberg, L. (1999). Short-term prediction of the power production from wind farms. <i>J. Wind Eng. Ind. Aerodyn.</i> <b>80</b> 207–220.
Landberg, L. and Watson, S. J. (1994). Short-term prediction of local wind conditions. <i>Bound.-Layer Meteor.</i> <b>70</b> 171–195.
Lange, M. (2005). On the uncertainty of wind power predictions—Analysis of the forecast accuracy and statistical distribution of errors. <i>J. Solar Energ.-T. ASME</i> <b>127</b> 177–184.
Matos, M. A. and Bessa, R. J. (2010). Setting the operating reserve using probabilistic wind power forecasts. <i>IEEE T. Power Syst.</i> <b>26</b> 594–603.
Möller, A., Lenkoski, A. and Thorarinsdottir, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. <i>Q. J. Royal Met. Soc.</i> <b>139</b> 982–991.
Morthorst, P. E. (2003). Wind power and the conditions at a liberalized power market. <i>Wind Energy</i> <b>6</b> 297–308.
Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. <i>Wea. Forecasting</i> <b>8</b> 281–293.
Murphy, A. H. and Winkler, R. L. (1987). A general framework for forecast verification. <i>Mon. Wea. Rev.</i> <b>115</b> 1330–1338.
Nielsen, H. A., Madsen, H. and Nielsen, T. S. (2006). Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts. <i>Wind Energy</i> <b>9</b> 95–108.
Ortega-Vazquez, M. A. and Kirschen, D. S. (2009). Estimating the spinning reserve requirements in systems with significant wind power generation penetration. <i>IEEE T. Power Syst.</i> <b>24</b> 114–124.
Palmer, T. N. (2012). Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. <i>Quart. J. Royal Met. Soc.</i> <b>665</b> 841–861.
Papavasiliou, A. and Oren, S. S. (2013). Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. <i>Oper. Res.</i> <b>61</b> 578–592.
Peña Diaz, A., Gryning, S. E. and Mann, J. (2010). On the length-scale of the wind profile. <i>Quart. J. Royal Met. Soc.</i> <b>136</b> 2119–2131.
Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions. <i>J. R. Stat. Soc. Ser. C Appl. Stat.</i> <b>61</b> 555–576.
Pinson, P., Chevallier, C. and Kariniotakis, G. (2007). Trading wind generation from short-term probabilistic forecasts of wind power. <i>IEEE T. Power Syst.</i> <b>22</b> 1148–1156.
Pinson, P. and Girard, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. <i>Appl. Energ.</i> <b>96</b> 12–20.
Pinson, P. and Kariniotakis, G. (2010). Conditional prediction intervals of wind power generation. <i>IEEE T. Power Syst.</i> <b>25</b> 1845–1856.
Pinson, P., McSharry, P. E. and Madsen, H. (2010). Reliability diagrams for nonparametric density forecasts of continuous variables: Accounting for serial correlation. <i>Quart. J. Royal Met. Soc.</i> <b>136</b> 77–90.
Pinson, P., Nielsen, H. A., Madsen, H., Papaefthymiou, G. and Klöckl, B. (2009). From probabilistic forecasts to statistical scenarios of short-term wind power production. <i>Wind Energy</i> <b>12</b> 51–62.
Roulston, M. S., Kaplan, D. T., Hardenberg, J. and Smith, L. A. (2003). Using medium-range weather forecasts to improve the value of wind energy production. <i>Renew. Energ.</i> <b>28</b> 585–602.
Sideratos, G. and Hatziargyriou, N. D. (2007). An advanced statistical method for wind power forecasting. <i>IEEE T. Power Syst.</i> <b>22</b> 258–265.
Sideratos, G. and Hatziargyriou, N. D. (2012). Probabilistic wind power forecasting using radial basis function neural networks. <i>IEEE T. Power Syst.</i> <b>27</b> 1788–1796.
Skytte, K. (1999). The regulating power market on the Nordic power exchange Nord Pool: An econometric analysis. <i>Energ. Econ.</i> <b>21</b> 295–308.
Taylor, J. W., McSharry, P. E. and Buizza, R. (1999). Wind power density forecasting using ensemble predictions and time series models. <i>IEEE T. Energy Conver.</i> <b>24</b> 775–782.
Tol, R. S. J. (1997). Autoregressive conditional heteroscedasticity in daily wind speed measurements. <i>Theo. Appl. Clim.</i> <b>56</b> 113–122.
Tong, H. (2011). Threshold models in time series analysis—30 years on. <i>Stat. Interface</i> <b>4</b> 107–118.
Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J. N. and Ciais, P. (2010). Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. <i>Nat. Geosci.</i> <b>3</b> 756–761.
Vincent, C. L., Giebel, G., Pinson, P. and Madsen, H. (2010). Resolving nonstationary spectral information in wind speed time series using the Hilbert–Huang transform. <i>J. Appl. Meteor. Clim.</i> <b>49</b> 253–267.
Wallis, K. F. (2003). Chi-squared tests of interval and density forecasts, and the bank of England’s fan charts. <i>Int. J. Forecasting</i> <b>19</b> 165–175.
WWEA (World Wind Energy Association) (2012). 2012—Half-year report. Technical report. Available at <a href="http://www.wwindea.org/webimages/Half-year_report_2012.pdf">http://www.wwindea.org/webimages/Half-year_report_2012.pdf</a>.