Wildfire‐mediated vegetation change in boreal forests of Alberta, Canada

Ecosphere - Tập 9 Số 3 - 2018
Diana Stralberg1,2, Xianli Wang2,3, Marc‐André Parisien4, François Robinne2, Péter Sólymos1, C. Lisa Mahon5, Scott E. Nielsen2, Erin M. Bayne1
1Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, Alberta T6G 2E9, Canada
2Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, T6G 2H1, Canada
3Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen St E, Sault Ste Marie, Ontario, P6A 2E6 Canada
4Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320 122 Street, Edmonton, Alberta, T6H 3S5 Canada
5Canadian Wildlife Service, Northern Region, Environment and Climate Change Canada, 91780 Alaska Highway, Whitehorse, Yukon, Y1A 5X7 Canada

Tóm tắt

Abstract

Climate‐induced vegetation change may be delayed in the absence of disturbance catalysts. However, increases in wildfire activity may accelerate these transitions in many areas, including the western boreal region of Canada. To better understand factors influencing decadal‐scale changes in upland boreal forest vegetation, we developed a hybrid modeling approach that constrains projections of climate‐driven vegetation change based on topo‐edaphic conditions coupled with weather‐ and fuel‐based simulations of future wildfires using Burn‐P3, a spatial fire simulation model. We evaluated eighteen scenarios based on all possible combinations of three fuel assumptions (static, fire‐mediated, and climate‐driven), two fire‐regime assumptions (constrained and unconstrained), and three global climate models. We simulated scenarios of fire‐mediated change in forest composition over the next century, concluding that, even under conservative assumptions about future fire regimes, wildfire activity could hasten the conversion of approximately half of Alberta's upland mixedwood and conifer forest to more climatically suited deciduous woodland and grassland by 2100. When fire‐regime parameter inputs (number of fire ignitions and duration of burning) were modified based on future fire weather projections, the simulated area burned was almost enough to facilitate a complete transition to climate‐predicted vegetation types. However, when fire‐regime parameters were held constant at their current values, the rate of increase in fire probability diminished, suggesting a negative feedback by which a short‐term increase in less‐flammable deciduous forest leads to a long‐term reduction in area burned. Our spatially explicit simulations of fire‐mediated vegetation change provide managers with scenarios that can be used to plan for a range of alternative landscape conditions.

Từ khóa


Tài liệu tham khảo

10.1890/ES15-00203.1

10.1016/j.foreco.2009.09.001

10.1071/WF09053

Arno S. F., 1980, Forest fire history in the Northern Rockies, Journal of Forestry, 78, 460, 10.1093/jof/78.8.460

10.1111/j.1365-2486.2008.01679.x

10.1111/gcb.12349

10.3390/f7080157

10.1139/cjfr-2013-0372

10.1071/WF11073

10.1111/gcb.13142

Boulanger Y., Model‐specification uncertainty in future area burned by wildfires in Canada, International Journal of Wildland Fire

Boulanger Y., 2016, Climate change impacts on forest landscapes along the Canadian southern boreal forest transition zone, Landscape Ecology, 32, 1

10.1016/j.foreco.2009.08.024

10.1023/A:1010933404324

10.1007/s100210000047

Canadian Forest Service, 2015, Canadian national fire database

10.5194/acpd-11-22893-2011

10.1890/1051-0761(2001)011[0097:FTAWIT]2.0.CO;2

Cushman S. A. D.McKenzie D. L.Peterson J.Littell andK. S.McKelvey.2006.Research agenda for integrated landscape modeling. USDA Forest Service Gen. Tech. Rep. RMRS‐194.Rocky Mountain Research Station Fort Collins Colorado USA.https://www.fs.usda.gov/treesearch/pubs/27437

10.1890/080088

10.1016/j.foreco.2012.07.033

10.1038/nclimate2656

10.1007/s11027-005-9020-7

10.1139/x01-010

10.1071/WF08187

10.1007/s10584-005-5935-y

Forestry Canada Fire Danger Group.1992.Development and structure of the Canadian Forest Fire Behavior Prediction System. Information Report ST‐X‐3.Canadian Forest Service Ottawa Ontario Canada.https://cfs.nrcan.gc.ca/publications?id=10068

10.1038/nclimate2392

10.1071/WF10103

10.1126/science.aaa9092

10.1016/j.ecolmodel.2007.12.010

10.1007/s10980-013-9927-4

10.1016/j.ecolmodel.2010.07.013

10.1073/pnas.1409316111

10.1111/j.1466-8238.2010.00613.x

10.1139/x94-237

10.1139/x01-152

10.1007/BF01182849

10.1111/gcb.13795

10.1111/j.1365-2699.1997.00138.x

10.1175/BAMS-D-12-00121.1

Jarvis A. H. I.Reuter A.Nelson andE.Guevara.2008.Hole‐filled seamless SRTM data V4 International Centre for Tropical Agriculture (CIAT).http://srtm.csi.cgiar.org

10.1111/j.1365-2486.2009.02051.x

10.5194/gmd-4-543-2011

10.1029/2006GL025677

10.1016/j.ecolmodel.2004.03.015

10.1007/s10584-008-9460-7

10.1002/ecs2.1632

10.1111/gcb.13124

10.1890/0012-9658(1998)079[0106:AYROFA]2.0.CO;2

10.1038/ncomms2681

10.1073/pnas.1111576109

10.1111/gcb.13645

10.1111/ecog.01849

10.1111/j.1365-2664.2010.01830.x

10.1111/gcb.13629

10.1111/j.1466-8238.2011.00669.x

10.1111/j.1365-2486.2010.02357.x

10.1023/A:1008181313360

Natural Regions Committee.2006.Natural Regions and Subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852.

10.3390/f7110265

10.1111/j.1365-2699.2010.02381.x

10.1111/ele.12110

Pan D. J.Schieck andS. F.Morrison.2014.2000 Alberta backfilled wall‐to‐wall land cover Version 2.5 ‐ Metadata.http://www.abmi.ca/home/publications/301-350/349.html

Parisien M. A. V. G.Kafka K. G.Hirsch J. B.Todd S. G.Lavoie andP. D.Maczek.2005.Mapping wildfire susceptibility with the BURN‐P3 simulation model.Natural Resources Canada Canadian Forest Service Northern Forestry Centre Edmonton Alberta Canada.https://cfs.nrcan.gc.ca/publications?id=25627

10.1890/10-0326.1

10.1007/s10021-011-9474-2

10.1038/nclimate1293

10.1071/WF09001

10.1139/er-2013-0042

10.1890/11-0495.1

10.1071/WF9950063

10.1071/WF16058

10.1038/nclimate2719

Schieck J. P.Sólymos andD.Huggard.2014.Human Footprint in Alberta. ABMI Science Letters.Alberta Biodiversity Monitoring Institute Edmonton Alberta Canada.http://www.abmi.ca/home/newsletters/scienceletter-past-issues.html

Schneider R.2013.Alberta's Natural Subregions under a Changing Climate.Alberta Biodiversity Monitoring Institure Edmonton Alberta Canada.http://www.biodiversityandclimate.abmi.ca/#reports

10.1002/eco.1707

10.1139/X09-033

10.5751/ES-00486-070108

10.1038/nclimate3303

10.1016/j.gloplacha.2006.07.028

10.1126/science.1240294

10.1029/2001JD000484

10.1890/13-2289.1

10.1046/j.1365-2699.2003.00838.x

10.3732/ajb.1200469

10.1175/BAMS-D-11-00094.1

10.1890/12-0425.1

10.1002/hyp.11183

10.1139/cjfr-2016-0475

10.1038/ngeo2325

Tymstra C. R.Bryce B.Wotton andO.Armitage.2010.Development and structure of Prometheus: the Canadian wildland fire growth simulation model. Information Report NOR‐X‐417.Natural Resources Canada Canadian Forest Service Northern Forestry Centre Edmonton Alberta Canada.https://cfs.nrcan.gc.ca/publications?id=31775

10.1071/WF06084

Tymstra C. D.Wang andM.‐P.Rogeau.2005.Alberta wildfire regime analysis. Alberta Sustainable Resource Development Forest Protection Division Wildfire Science and Technology Report PFFC‐01‐05 Edmonton Alberta Canada.https://archive.org/details/albertawildfirer00tyms_0

10.5558/tfc45103-2

Van Wagner C. E., 1987, Development and Structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report 35

10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2

10.1038/nclimate3329

10.1139/x99-214

10.1002/eco.1493

10.1111/gcb.12590

10.1088/1748-9326/aa5835

10.1071/WF15091

10.1007/s10584-015-1375-5

10.1038/nclimate2007

10.1111/jbi.12533

10.1002/ecs2.2128

10.1007/s40641-016-0031-0

10.5558/tfc69187-2

10.1071/WF09002

10.1111/gcb.12945

10.1073/pnas.1420844112