Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice

Leukemia - Tập 29 Số 5 - Trang 1032-1040 - 2015
Anna Staffas1, C. Karlsson2, Marie Persson2, Lars Palmqvist1, Martin O. Bergö2
1Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2Department of Molecular and Clinical Medicine, Sahlgrenska Cancer Center, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ley T, Miller C, Ding L, Raphael B, Mungall AJ RA, Hoadley K et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

Bacher U, Haferlach T, Schnittger S, Kreipe H, Kroger N . Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukaemia. Br J Haematol 2011; 153: 149–167.

Fatrai S, van Gosliga D, Han L, Daenen SM, Vellenga E, Schuringa JJ . KRAS(G12V) enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem 2011; 286: 6061–6070.

Maher J, Baker D, Dibb N, Roberts I . Mutant ras promotes haemopoietic cell proliferation or differentiation in a cell-specific manner. Leukemia 1996; 10: 83–90.

Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

Mansur MB, Hassan R, Barbosa TC, Splendore A, Jotta PY, Yunes JA et al. Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia. BMC Cancer 2012; 12: 9.

Wiemels JL, Zhang Y, Chang J, Zheng S, Metayer C, Zhang L et al. RAS mutation is associated with hyperdiploidy and parental characteristics in pediatric acute lymphoblastic leukemia. Leukemia 2005; 19: 415–419.

Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013; 45: 242–252.

Swan KA, Alberola-Ila J, Gross JA, Appleby MW, Forbush KA, Thomas JF et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J 1995; 14: 276–285.

Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

Wahlstrom AM, Cutts BA, Liu M, Lindskog A, Karlsson C, Sjogren AK et al. Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease. Blood 2008; 112: 1357–1365.

Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Science Transl Med 2011; 3: 76ra27.

Dail M, Li Q, McDaniel A, Wong J, Akagi K, Huang B et al. Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents. Proc Natl Acad Sci USA 2010; 107: 5106–5111.

Kindler T, Cornejo MG, Scholl C, Liu J, Leeman DS, Haydu JE et al. K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to gamma-secretase inhibitors. Blood 2008; 112: 3373–3382.

Kong G, Du J, Liu Y, Meline B, Chang YI, Ranheim EA et al. Notch1 gene mutations target KRAS G12D-expressing CD8+ cells and contribute to their leukemogenic transformation. J Biol Chem 2013; 288: 18219–18227.

Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol. 2009; 7: e59.

Sjogren AK, Andersson KM, Khan O, Olofsson FJ, Karlsson C, Bergo MO . Inactivating GGTase-I reduces disease phenotypes in a mouse model of K-RAS-induced myeloproliferative disease. Leukemia 2011; 25: 186–189.

Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood 2009; 113: 1304–1314.

Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 2010; 5: e9258.

Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

Braun BS, Archard JA, Van Ziffle JA, Tuveson DA, Jacks TE, Shannon K . Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood 2006; 108: 2041–2044.

Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U SA 1999; 96: 680–685.

Du J, Liu Y, Meline B, Kong G, Tan LX, Lo JC et al. Loss of CD44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals. Leukemia 2013; 27: 754–757.

Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T et al. Identification of mutant KRas-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem 2013; 288: 2403–2413.

Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J et al. Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat Genet 2001; 29: 25–33.

Matallanas D, Romano D, Al-Mulla F, O'Neill E, Al-Ali W, Crespo P et al. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell 2011; 44: 893–906.

Grabocka E, Pylayeva-Gupta Y, Jones MJ, Lubkov V, Yemanaberhan E, Taylor L et al. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 2014; 25: 243–256.

Romero F, Martinez AC, Camonis J, Rebollo A . Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. EMBO J 1999; 18: 3419–3430.