Wild herbivorous mammals (genus Neotoma) host a diverse but transient assemblage of fungi
Symbiosis - 2022
Tóm tắt
Fungi are often overlooked in microbiome research and, as a result, little is known about the mammalian mycobiome. Although frequently detected in vertebrate guts and known to contribute to digestion in some herbivores, whether these eukaryotes are a persistent part of the mammalian gut microbiome remains contentious. To address this question, we sampled fungi from wild woodrats (Neotoma spp.) collected from 25 populations across the southwestern United States. For each animal, we collected a fecal sample in the wild, and then re-sampled the same individual after a month in captivity on a controlled diet. We characterized and quantified fungi using three techniques: ITS metabarcoding, shotgun metagenomics and qPCR. Wild individuals contained diverse fungal assemblages dominated by plant pathogens, widespread molds, and coprophilous taxa primarily in Ascomycota and Mucoromycota. Fungal abundance, diversity and composition differed between individuals, and was primarily influenced by animal geographic origin. Fungal abundance and diversity significantly declined in captivity, indicating that most fungi in wild hosts came from diet and environmental exposure. While this suggests that these mammals lack a persistent gut mycobiome, natural fungal exposure may still impact fungal dispersal and animal health.
Từ khóa
Tài liệu tham khảo
Abarenkov K, Zirk A, Piirmann T, Pöhönen R, Ivanov F, Nilsson RH, Kõljalg U (2020) UNITE QIIME release for Fungi. UNITE Community. https://doi.org/10.15156/BIO/786385
Ahmed SA, Hofmüller W, Seibold M, de Hoog GS, Harak H, Tammer I, van Diepeningen AD, Behrens-Baumann W (2017) Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60:244–253. https://doi.org/10.1111/myc.12588
Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC, Gesell JR, Auchtung JM, Ajami NJ et al (2018) Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere 3:e00092–e00018. https://doi.org/10.1128/mSphere.00092-18
Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, Röhmel J, Eschenhagen P et al (2019) Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176:1340–1355. https://doi.org/e1315.10.1016/j.cell.2019.01.041
Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, Hauffe HC, Sharpton TJ (2020) The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5:e00061–e00020. https://doi.org/10.1128/mSystems.00061-20
Bauchop T (1979) The rumen anaerobic fungi: Colonizers of plant fibre. Ann Rech Vet 10:246–248
Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum. I. Fermentation, isolation and antibacterial properties. J Antibiot 31:1099–1101. https://doi.org/10.7164/antibiotics.31.1099
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Boots B, Lillis L, Clipson N, Petrie K, Kenny DA, Boland TM, Doyle E (2013) Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. J Appl Microbiol 114:626–635. https://doi.org/10.1111/jam.12067
Boutin RCT, Sbihi H, McLaughlin RJ, Hahn AS, Konwar KM, Loo RS, Dai D, Petersen C et al (2021) Composition and associations of the infant gut fungal microbiota with environmental factors and childhood allergic outcomes. mBio 12:e03396–e03320. https://doi.org/10.1128/mBio.03396-20
Bradshaw AJ, Autumn KC, Rickart EA, Dentinger BTM (2022) On the origin of feces: Fungal diversity, distribution, and conservation implications from feces of small mammals. Environ DNA 00:1–19. https://doi.org/10.1002/edn3.281
Braga MP, Razzolini E, Boeger WA (2015) Drivers of parasite sharing among Neotropical freshwater fishes. J Anim Ecol 84:487–497. https://doi.org/10.1111/1365-2656.12298
Branstetter MG, Ješovnik A, Sosa-Calvo J, Lloyd MW, Faircloth BC, Brady SG, Schultz TR (2017) Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc R Soc Lond B Biol Sci 284:20170095. https://doi.org/10.1098/rspb.2017.0095
Brown AE, Finlay R, Ward JS (1987) Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol Biochem 19:657–664. https://doi.org/10.1016/0038-0717(87)90044-7
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
Chamberlain S (2021) rnoaa: ‘NOAA’ Weather Data from R. R package version 1.3.4.https://CRAN.R-project.org/package=rnoaa
Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Cooper N, Griffin R, Franz M, Omotayo M, Nunn CL, Fryxell J (2012) Phylogenetic host specificity and understanding parasite sharing in primates. Ecol Lett 15:1370–1377. https://doi.org/10.1111/j.1461-0248.2012.01858.x
Cox MS, Deblois CL, Suen G (2021) Assessing the response of ruminal bacterial and fungal microbiota to whole-rumen contents exchange in dairy cows. Front Microbiol 12:1–17. https://doi.org/10.3389/fmicb.2021.665776
Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:1–12. https://doi.org/10.1186/gm467
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820
Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front Zool 3:11. https://doi.org/10.1186/1742-9994-3-11
Dearing MD (1997) The manipulation of plant toxins by a food-hoarding herbivore, Ochotona princeps. Ecology 78:774–781. https://doi.org/10.2307/2266057
Dearing MD, Orr TJ, Greenhalgh R, Klure DM, Weinstein SB, Stapleton TE, Yamada KYH, Nelson MD et al (2022) Toxin tolerance across landscapes: Ecological exposure not a prerequisite. Funct Ecol 00:1–13. https://doi.org/10.1111/1365-2435.14093
Dentinger BTM (2022) Large Kraken2 database for Fungi. University of Utah, The Hive: University of Utah Research Data Repository. https://doi.org/10.7278/S50d-154b-fppf
Desjardin DE, Anders DA, Zak JC (1992) Marasmius inaquosi sp. nov. from Sonoran Desert woodrat middens. Mycologia 84:229–234. https://doi.org/10.2307/3760255
Dial KP (1988) Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76:531–537. https://doi.org/10.1007/BF00397865
Dietzel K, Valle D, Fierer N, U’Ren JM, Barberán A (2019) Geographical distribution of fungal plant pathogens in dust across the United States. Front Ecol Evol 7:1–8. https://doi.org/10.3389/fevo.2019.00304
Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, Cuff C, Lewis JD et al (2013) Fungi of the murine gut: Episodic variation and proliferation during antibiotic treatment. PLoS One 8:e71806. https://doi.org/10.1371/journal.pone.0071806
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S et al (2017) PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01657
Fiers WD, Gao IH, Iliev ID (2019) Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Curr Opin Microbiol 50:79–86. https://doi.org/10.1016/j.mib.2019.09.010
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC (2019) A fungal world: Could the gut mycobiome be involved in neurological disease? Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.03249
Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:19. https://doi.org/10.18637/jss.v022.i07
Greenhalgh R, Holding ML, Orr TJ, Henderson JB, Parchman TL, Matocq MD, Shapiro MD, Dearing MD (2022) Trio-binned genomes of the woodrats Neotoma bryanti and Neotoma lepida reveal novel gene islands and rapid copy number evolution of xenobiotic metabolizing genes. Mol Ecol Resour In Press. https://doi.org/10.1111/1755-0998.13650
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW et al (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17. https://doi.org/10.1111/1574-6941.12383
Harrison XA, McDevitt AD, Dunn JC, Griffiths SM, Benvenuto C, Birtles R, Boubli JP, Bown K et al (2021) Fungal microbiomes are determined by host phylogeny and exhibit widespread associations with the bacterial microbiome. Proc R Soc Lond B Biol Sci 288:20210552. https://doi.org/10.1098/rspb.2021.0552
Hespell RB, Akin DE, Dehority BA (1997) Bacteria, Fungi, and Protozoa of the Rumen. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal MIcrobiology. Chapman & Hall, pp 59–141
Higgins KL, Arnold AE, Coley PD, Kursar TA (2014) Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol 8:1–11. https://doi.org/10.1016/j.funeco.2013.12.005
Hijmans RJ (2019) geosphere: Spherical trigonometry. R package version 1.5–10.https://CRAN.R-project.org/package=geosphere
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019. https://doi.org/10.1371/journal.pone.0066019
Iliev ID, Leonardi I (2017) Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 17:635–646. https://doi.org/10.1038/nri.2017.55
Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11:503–507. https://doi.org/10.1016/S0169-5347(96)10053-7
Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Micro 3:937–947. https://doi.org/10.1038/nrmicro1286
Kohl KD (2020) Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci 375:20190251. https://doi.org/10.1098/rstb.2019.0251
Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1–9. https://doi.org/10.3389/fmicb.2016.01165
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/aem.01043-13
Kurtzman CP, Robnett CJ, Ward JM, Brayton C, Gorelick P, Walsh TJ (2005) Multigene phylogenetic analysis of pathogenic candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov. J Clin Microbiol 43:101–111. https://doi.org/10.1128/JCM.43.1.101-111.2005
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923
Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://CRAN.R-project.org/package=emmeans
Li J, Li L, Jiang H, Yuan L, Zhang L, Ma JE, Zhang X, Cheng M et al (2018) Fecal bacteriome and mycobiome in bats with diverse diets in South China. Curr Microbiol 75:1352–1361. https://doi.org/10.1007/s00284-018-1530-0
Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235. https://doi.org/10.1038/ismej.2010.49
Liu CM, Kachur S, Dwan MG, Abraham AG, Aziz M, Hsueh P-R, Huang Y-T, Busch JD et al (2012) FungiQuant: A broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol 12:255. https://doi.org/10.1186/1471-2180-12-255
Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28:721–730. https://doi.org/10.1111/mec.14995
Lund A (1980) Yeasts in the rumen contents of musk oxen. J Gen Microbiol 121:273–276
Martínez-Mota R, Kohl KD, Orr TJ, Denise Dearing M (2020) Natural diets promote retention of the native gut microbiota in captive rodents. ISME J 14:67–78. https://doi.org/10.1038/s41396-019-0497-6
Matocq MD, Shurtliff QR, Feldman CR (2007) Phylogenetics of the woodrat genus Neotoma (Rodentia: Muridae): implications for the evolution of phenotypic variation in male external genitalia. Mol Phylogenet Evol 42:637–652. https://doi.org/10.1016/j.ympev.2006.08.011
McMurdie PJ, Holmes SP (2013) phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217
Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA et al (2017) The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5:153. https://doi.org/10.1186/s40168-017-0373-4
Neu AT, Allen EE, Roy K (2021) Defining and quantifying the core microbiome: Challenges and prospects. Proc Natl Acad Sci U S A 118:e2104429118. https://doi.org/10.1073/pnas.2104429118
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P (2019) and Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Micro 17:95–109. https://doi.org/10.1038/s41579-018-0116-y
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB et al (2019) vegan: Community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan
Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Micro 14:434–447. https://doi.org/10.1038/nrmicro.2016.59
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P et al (2011) Scikit-learn: Machine Learning in Python. J Mach Learn Res 12:2825–2830
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821
R Core Team (2020) R: A language and environment for statistical computing. R version 3.6.3.https://www.R-project.org/
Reid FA(2006) A field guide to mammals of North America. 4th ed. edition. Houghton Mifflin Company, New York
Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD(2018) ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7:1418–1418. https://doi.org/10.12688/f1000research.15704.1
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG et al (2019) Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:1–12. https://doi.org/10.1126/science.aaw4361
Sawaswong V, Chanchaem P, Khamwut A, Praianantathavorn K, Kemthong T, Malaivijitnond S, Payungporn S (2020) Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis). Fungal Genet Biol 144:103468. https://doi.org/10.1016/j.fgb.2020.103468
Schliep KP(2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. https://doi.org/10.1093/bioinformatics/btq706
Seyedmousavi S, Bosco SdMG, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE et al(2018) Fungal infections in animals: a patchwork of different situations. Med Mycol 56:S165–S187. https://doi.org/10.1093/mmy/myx104
Silliman BR, Newell SY(2003) Fungal farming in a snail. Proc Natl Acad Sci U S A 100:15643–15648. https://doi.org/10.1073/pnas.2535227100
Skopec M, Haley S, Torregrossa A-M, Dearing MD(2008) An oak (Quercus agrifolia) specialist (Neotoma macrotis) and a sympatric generalist (Neotoma lepida) show similar intakes and digestibilities of oak. Physiol Biochem Zool 81:426–433. https://doi.org/10.1086/589106
Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO et al (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351:1192–1195. https://doi.org/10.1126/science.aad1431
Stephens RB, Rowe RJ (2020) The underappreciated role of rodent generalists in fungal spore dispersal networks. Ecology 101:e02972. https://doi.org/10.1002/ecy.2972
Suhr MJ, Hallen-Adams HE(2015) The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia 107:1057–1073. https://doi.org/10.3852/15-147
Sun B, Gu Z, Wang X, Huffman MA, Garber PA, Sheeran LK, Zhang D, Zhu Y et al(2018) Season, age, and sex affect the fecal mycobiota of free-ranging Tibetan macaques (Macaca thibetana). Am J Primatol 80:e22880. https://doi.org/10.1002/ajp.22880
Sun B, Xia Y, Garber PA, Amato KR, Gomez A, Xu X, Li W, Huang M et al (2021) Captivity is associated with gut mycobiome composition in Tibetan macaques (Macaca thibetana). Front Microbiol 12:665853. https://doi.org/10.3389/fmicb.2021.665853
Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T (2016) and Cullen D. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol 82:7217–7226. https://doi.org/10.1128/AEM.02576-16
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688
Tedersoo L, and Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8:774–779. https://doi.org/10.1111/1758-2229.12438
Teunissen MJ, Op den Camp HJ, Orpin CG, Huis in ‘t Veld JH, and Vogels GD (1991) Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol 137:1401–1408. https://doi.org/10.1099/00221287-137-6-1401
Tirelle P, Breton J, Riou G, Déchelotte P, Coëffier M (2020) and Ribet D. Comparison of different modes of antibiotic delivery on gut microbiota depletion efficiency and body composition in mouse. BMC Microbiol 20:340. https://doi.org/10.1186/s12866-020-02018-9
van T Bernardes, Pettersen E, Gutierrez VK, Laforest-Lapointe MW, Jendzjowsky I, Cavin NG, Vicentini J-B, Keenan FA CM, et al(2020) Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 11:2577. https://doi.org/10.1038/s41467-020-16431-1
Vaughan TA (1990) Ecology of living packrats. In: Betancourt JL, Van Devender TR, Martin PS (eds) Packrat Middens. University of Arizona Press, Tucson, pp 14–27
Venables W, Ripley B(2002) Modern Applied Statistics with S. 4th edition. Springer, New York, NY
Wang Y, Youssef NH, Couger MB, Hanafy RA, Elshahed MS, Stajich JE, Zhaxybayeva O (2019) Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4:e00247–e00219. https://doi.org/10.1128/mSystems.00247-19
Weinstein SB, Martínez-Mota R, Stapleton TE, Klure DM, Greenhalgh R, Orr TJ, Dale C, Kohl KD et al (2021) Microbiome stability and structure is governed by host phylogeny over diet and geography in woodrats (Neotoma spp.). Proc Natl Acad Sci U S A 118:e2108787118. https://doi.org/10.1073/pnas.2108787118
Whitford WG, Steinberger Y (2010) Pack rats (Neotoma spp.): Keystone ecological engineers? J Arid Environ 74:1450–1455. https://doi.org/10.1016/j.jaridenv.2010.05.025
Wood DE, Lu J, Langmead B(2019) Improved metagenomic analysis with Kraken 2. Genome Biol 20:257. https://doi.org/10.1186/s13059-019-1891-0
Ye SH, Siddle KJ, Park DJ, Sabeti PC (2019) Benchmarking metagenomics tools for taxonomic classification. Cell 178:779–794. https://doi.org/10.1016/j.cell.2019.07.010
Yeung F, Chen Y-H, Lin J-D, Leung JM, McCauley C, Devlin JC, Hansen C, Cronkite A et al (2020) Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe 27:809–822.e806. https://doi.org/10.1016/j.chom.2020.02.015
Zak J, Whitford W (1988) Interactions among soil biota in desert ecosystems. Agric Ecosyst Environ 24:87–100. https://doi.org/10.1016/0167-8809(88)90058-8
Zhang J, Shi H, Wang Y, Li S, Cao Z, Ji S, He Y, Zhang H(2017) Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in holstein heifers. Front Microbiol 8:2206. https://doi.org/10.3389/fmicb.2017.02206