Wie profitieren Menschen mit Diabetes von Big Data und künstlicher Intelligenz?
Tóm tắt
Từ khóa
Tài liệu tham khảo
World Health Organization (2021) Ethics and governance of artificial intelligence for health: WHO guidance
https://www.wissenschaftsjahr.de/2019/fileadmin/user_upload/Wissenschaftsjahr_2019/Downloads/WJ19_Karliczek.Impulse._Civey-Umfrage_Medizin.pdf. Zugegriffen: 8. Aug. 2021
https://www.bitkom.org/sites/default/files/2020-09/bitkom-charts-kunstliche-intelligenz-28-09-2020_final.pdf. Zugegriffen: 8. Aug. 2021
https://www.bitkom.org/sites/default/files/2020-07/prasentation_digitalhealth2020.pdf. Zugegriffen: 8. Aug. 2021
Kulzer B, Heinemann L (2021) Digitalisierungs- und Technologiereport 2021 (D.U.T-Report). Kirchheim-Verlag, Mainz
Contreras I, Vehi J (2018) Artificial intelligence for diabetes. Management and decision support: literature review. J Med Internet 20:e10775
Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K (2019) Transforming diabetes care through artificial intelligence: the future is here. Popul Health Manag 22:229–242
Perveen S, Shahbaz M, Keshavjee K, Guergachi A (2019) Prognostic modeling and prevention of diabetes using machine learning technique. Sci Rep 9:13805
Zhang L, Shang X, Sreedharan S, Yan X, Liu J, Keel S et al (2020) Predicting the development of type 2 diabetes in a large Australian cohort using machine-learning techniques: longitudinal survey study. JMIR Med Inform 8:e16850
Ballinger B, Hsieh J, Singh A, Sohoni N, Wang J, Tison GH et al (2018) Deepheart: semi-supervised sequence learning for cardiovascular risk prediction (arXiv,1802.02511)
Acciaroli G, Sparacino G, Hakaste L, Facchinetti A, Di Nunzio GM, Palombit A et al (2018) Diabetes and prediabetes classification using glycemic variability indices from continuous glucose monitoring data. J Diabetes Sci Technol 12:105–113
Artzi NS, Shilo S, Hadar E, Rossman H, Barbash-Hazan S, Ben-Haroush A et al (2020) Prediction of gestational diabetes based on nationwide electronic health records. Nat Med 26:71–76
Shen J, Chen J, Zheng Z, Zheng J, Liu Z, Song J et al (2020) An innovative artificial intelligence-based app for the diagnosis of gestational diabetes mellitus (GDM-AI): development study. J Med Internet Res 22:e21573
Stein N, Delury K, Paruthi J (2020) One-year clinical outcomes of an artificial intelligence-based digital diabetes prevention program. https://www.lark.com/wp-content/uploads/2020/05/Lark-1-year-Outcomes-of-AI-based-DPP.pdf. Zugegriffen: 8. Aug. 2021
Wiki J, Kingham S, Campbell M (2020) A geospatial analysis of type 2 diabetes mellitus and the food environment in urban New Zealand. Soc Sci Med 2020:113231
Präger M, Kurz C, Böhm J, Laxy M, Maier W (2019) Using data from online geocoding services for the assessment of environmental obesogenic factors: a feasibility study. Int J Health Geogr 18:13
Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT et al (2020) Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 1:e35–e44
Kitamura S, Takahashi K, Sang Y, Fukushima K, Tsuji K, Wada J (2020) Deep learning could diagnose diabetic nephropathy with renal pathological immunofluorescent images. Diagnostics (Basel) 10:466
Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A et al (2019) Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep 9:11862
Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B et al (2018) Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J Med Internet 20:e22
Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC et al (2019) Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 42:2298–2306
DuBrava S, Mardekian J, Sadosky A, Bienen EJ, Parsons B, Hopps M et al (2017) Using random forest models to identify correlates of a diabetic peripheral neuropathy diagnosis from electronic health record data. Pain Med 18:107–115
Wang L, Pedersen PC, Strong DM, Tulu B, Agu E, Ignotz R (2015) Smartphone-based wound assessment system for patients using smartphone. IEEE Trans Biomed Eng 62(2015):477–488
Anand RS, Stey P, Jain S, Biron DR, Bhatt H, Monteiro K et al (2018) Predicting mortality in diabetic ICU patients using machine learning and severity indices. AMIA Jt Summits Transl Sci Proc 18:310–319
Bhat V, Tazari M, Watt KD, Bhat M (2018) New-Onset Diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: a machine learning approach. Mayo Clin Proc 93:1794–1802
John MD (2020) Precision medicine in type 2 diabetes: using individualized prediction models to optimize selection of treatment. Diabetes 69:2075–2085
Tyler NS, Jacobs PG (2020) Artificial intelligence in decision support systems for type 1 diabetes. Sensors (Basel) 20:3214
Vettoretti M, Cappon G, Facchinetti A, Sparacino G (2020) Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors. Sensors (Basel) 20:3870
Barteit S, Lanfermann L, Bärnighausen T, Neuhann F, Beiersmann C (2021) Augmented, mixed, and virtual reality-based head-mounted devices for medical education: systematic review. JMIR Serious Games 9(3):e29080