Wie profitieren Menschen mit Diabetes von Big Data und künstlicher Intelligenz?

Bernhard Kulzer1
1Diabetes-Zentrum Mergentheim, Forschungsinstitut der Diabetes-Akademie Bad Mergentheim (FIDAM), Universität Bamberg, Bad Mergentheim, Deutschland

Tóm tắt

Từ khóa


Tài liệu tham khảo

World Health Organization (2021) Ethics and governance of artificial intelligence for health: WHO guidance

https://www.wissenschaftsjahr.de/2019/fileadmin/user_upload/Wissenschaftsjahr_2019/Downloads/WJ19_Karliczek.Impulse._Civey-Umfrage_Medizin.pdf. Zugegriffen: 8. Aug. 2021

https://www.bitkom.org/sites/default/files/2020-09/bitkom-charts-kunstliche-intelligenz-28-09-2020_final.pdf. Zugegriffen: 8. Aug. 2021

https://www.bitkom.org/sites/default/files/2020-07/prasentation_digitalhealth2020.pdf. Zugegriffen: 8. Aug. 2021

Kulzer B, Heinemann L (2021) Digitalisierungs- und Technologiereport 2021 (D.U.T-Report). Kirchheim-Verlag, Mainz

Contreras I, Vehi J (2018) Artificial intelligence for diabetes. Management and decision support: literature review. J Med Internet 20:e10775

Dankwa-Mullan I, Rivo M, Sepulveda M, Park Y, Snowdon J, Rhee K (2019) Transforming diabetes care through artificial intelligence: the future is here. Popul Health Manag 22:229–242

Perveen S, Shahbaz M, Keshavjee K, Guergachi A (2019) Prognostic modeling and prevention of diabetes using machine learning technique. Sci Rep 9:13805

Zhang L, Shang X, Sreedharan S, Yan X, Liu J, Keel S et al (2020) Predicting the development of type 2 diabetes in a large Australian cohort using machine-learning techniques: longitudinal survey study. JMIR Med Inform 8:e16850

Ballinger B, Hsieh J, Singh A, Sohoni N, Wang J, Tison GH et al (2018) Deepheart: semi-supervised sequence learning for cardiovascular risk prediction (arXiv,1802.02511)

Acciaroli G, Sparacino G, Hakaste L, Facchinetti A, Di Nunzio GM, Palombit A et al (2018) Diabetes and prediabetes classification using glycemic variability indices from continuous glucose monitoring data. J Diabetes Sci Technol 12:105–113

Artzi NS, Shilo S, Hadar E, Rossman H, Barbash-Hazan S, Ben-Haroush A et al (2020) Prediction of gestational diabetes based on nationwide electronic health records. Nat Med 26:71–76

Shen J, Chen J, Zheng Z, Zheng J, Liu Z, Song J et al (2020) An innovative artificial intelligence-based app for the diagnosis of gestational diabetes mellitus (GDM-AI): development study. J Med Internet Res 22:e21573

Stein N, Delury K, Paruthi J (2020) One-year clinical outcomes of an artificial intelligence-based digital diabetes prevention program. https://www.lark.com/wp-content/uploads/2020/05/Lark-1-year-Outcomes-of-AI-based-DPP.pdf. Zugegriffen: 8. Aug. 2021

Wiki J, Kingham S, Campbell M (2020) A geospatial analysis of type 2 diabetes mellitus and the food environment in urban New Zealand. Soc Sci Med 2020:113231

Präger M, Kurz C, Böhm J, Laxy M, Maier W (2019) Using data from online geocoding services for the assessment of environmental obesogenic factors: a feasibility study. Int J Health Geogr 18:13

Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT et al (2020) Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health 1:e35–e44

Kitamura S, Takahashi K, Sang Y, Fukushima K, Tsuji K, Wada J (2020) Deep learning could diagnose diabetic nephropathy with renal pathological immunofluorescent images. Diagnostics (Basel) 10:466

Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A et al (2019) Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep 9:11862

Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B et al (2018) Prediction of incident hypertension within the next year: prospective study using statewide electronic health records and machine learning. J Med Internet 20:e22

Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC et al (2019) Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 42:2298–2306

DuBrava S, Mardekian J, Sadosky A, Bienen EJ, Parsons B, Hopps M et al (2017) Using random forest models to identify correlates of a diabetic peripheral neuropathy diagnosis from electronic health record data. Pain Med 18:107–115

Wang L, Pedersen PC, Strong DM, Tulu B, Agu E, Ignotz R (2015) Smartphone-based wound assessment system for patients using smartphone. IEEE Trans Biomed Eng 62(2015):477–488

Anand RS, Stey P, Jain S, Biron DR, Bhatt H, Monteiro K et al (2018) Predicting mortality in diabetic ICU patients using machine learning and severity indices. AMIA Jt Summits Transl Sci Proc 18:310–319

Bhat V, Tazari M, Watt KD, Bhat M (2018) New-Onset Diabetes and preexisting diabetes are associated with comparable reduction in long-term survival after liver transplant: a machine learning approach. Mayo Clin Proc 93:1794–1802

John MD (2020) Precision medicine in type 2 diabetes: using individualized prediction models to optimize selection of treatment. Diabetes 69:2075–2085

Tyler NS, Jacobs PG (2020) Artificial intelligence in decision support systems for type 1 diabetes. Sensors (Basel) 20:3214

Vettoretti M, Cappon G, Facchinetti A, Sparacino G (2020) Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors. Sensors (Basel) 20:3870

Barteit S, Lanfermann L, Bärnighausen T, Neuhann F, Beiersmann C (2021) Augmented, mixed, and virtual reality-based head-mounted devices for medical education: systematic review. JMIR Serious Games 9(3):e29080

Sinoo C, van der Pal S, Blanson Henkemans OA, Keizer A, Bierman BPB, Looije R (2018) Friendship with a robot: Children’s perception of similarity between a robot’s physical and virtual embodiment that supports diabetes self-management. Patient Educ Couns 101(7):1248–1255