Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự lai tạp rộng rãi giữa các loài bướm Operophtera bản địa và xâm lấn (Lepidoptera: Geometridae) tại châu Âu và Bắc Mỹ
Tóm tắt
Tại Bắc Mỹ, loài sâu mùa đông xâm lấn (Operopthera brumata) đã gây ra tình trạng rụng lá trong các hệ sinh thái rừng và cây trái ở British Columbia, Nova Scotia, Oregon, và khu vực đông bắc Hoa Kỳ ("Northeast"). Tại khu vực Đông Bắc, trước đây đã cho thấy rằng sự lai tạp đang xảy ra với loài bướm bản địa, bướm spanworm Bruce (O. bruceata)—một loài có phân bố rộng khắp ở nhiều nơi tại Bắc Mỹ. Tuy nhiên, việc sự lai tạp giữa các quần thể sâu mùa đông và bướm spanworm Bruce có xảy ra ở tất cả các khu vực mà sâu mùa đông đã phát triển hay không vẫn chưa được biết. Một yếu tố có thể ảnh hưởng đến sự lai tạp giữa hai loài này là sự hiện diện của ký sinh trùng endosymbiont điều chỉnh sinh sản, chẳng hạn như Wolbachia. Để xác định phạm vi địa lý của sự lai tạp giữa các quần thể của hai loài này, chúng tôi đã phân loại 1400 con bướm được thu hái từ thực địa tại châu Âu và Bắc Mỹ là sâu mùa đông, bướm spanworm Bruce, hoặc lai tạp bằng cách sử dụng 10–12 locusar microsatellite đa hình. Sau đó, chúng tôi đã kiểm tra từng cá thể để xác định sự hiện diện của Wolbachia thông qua khuếch đại PCR của đoạn gen wsp. Đối với tất cả các cá thể lai tạp, chúng tôi đã xác định nguồn gốc loài mẹ của chúng thông qua khuếch đại PCR và giải trình tự locus ty thể cytochrome oxidase I. Chúng tôi nhận thấy rằng các cá thể lai giữa sâu mùa đông và bướm spanworm Bruce dường như có mặt ở tất cả các khu vực của Bắc Mỹ mà sâu mùa đông đã xâm nhập, và rằng các cá thể lai có nguồn gốc từ cả sâu mùa đông và bướm spanworm Bruce. Ngoài ra, chúng tôi còn phát hiện các cá thể nhiễm Wolbachia từ tất cả các loài ở Bắc Mỹ, và tỷ lệ nhiễm ở các cá thể sâu mùa đông tại Bắc Mỹ thấp hơn nhiều (11,5%) so với các cá thể ở châu Âu (55,1%).
Từ khóa
#Sâu mùa đông #bướm spanworm Bruce #sinh sản điều chỉnh #ký sinh trùng endosymbiont #lai tạp #WolbachiaTài liệu tham khảo
Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY (2015) Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 12:16. https://doi.org/10.1186/s12983-015-0107-z
Allendorf FW, Leary RF, Spruell P et al (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622. https://doi.org/10.1016/S0169-5347(01)02290-X
Andersen JC, Havill NP, Caccone A et al (2017) Postglacial recolonization shaped the genetic diversity of the winter moth (Operophtera brumata) in Europe. Ecol Evol 7:3312–3323. https://doi.org/10.1002/ece3.2860/
Anderson EC (2008) Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos Trans R Soc B Biol Sci 363:2841–2850. https://doi.org/10.1098/rstb.2008.0043
Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genet 160:1217–1229
Anderson CJ, Oakeshott JG, Wee Tek T et al (2018) Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc Nat Acad Sci USA 115:5034–5039. https://doi.org/10.1073/pnas.1718831115
Ayres DR, Zaremba K, Strong DR (2004) Extinction of a common native species by hybridization with an invasive congener. Weed Technol 18:1288–1291
Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on wsp: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87. https://doi.org/10.1007/s00284-007-0055-8
Bing XL, Xia WQ, Gui JD et al (2014) Diversity and evolution of the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol Evol 4:2714–2737. https://doi.org/10.1002/ece3.1126
Bleidorn C, Gerth M (2017) A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. bioRxiv 133710; https://doi.org/10.1101/133710
Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710. https://doi.org/10.1038/35055543
Broadley HJ, Kelley EA, Elkinton JS et al (2018) Identification and impact of hyperparasitoids and predators affecting Cyzenis albicans (Tachinidae), a recently introduced biological control agent of winter moth (Operophtera brumata L.) in the northeastern U.S.A. Biol Control 121:99–108. https://doi.org/10.1016/j.biocontrol.2018.01.011
Cattel J, Kaur R, Gibert P et al (2016) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS ONE 11:e0147766. https://doi.org/10.1371/journal.pone.0147766
DeBach P, Rosen D (1991) Biological control by natural enemies. Cambridge University Press, Cambridge
Derks MFL, Smit S, Salis L et al (2015) The genome of winter moth (Operophtera brumata) provides a genomic perspective on sexual dimorphism and phenology. Genome Biol Evol 7:2321–2332. https://doi.org/10.1093/gbe/evv145
Dobson SL, Bourtzis K, Braig HR et al (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem Mol Biol 29:153–160
Duplouy A, Hornett EA (2018) Uncovering the hidden players in Lepidoptera biology: the heritable microbial symbionts. PeerJ 6:e4629. https://doi.org/10.7717/peerj.4629
Elkinton JS, Boettner GH, Sremac M et al (2010) Survey for winter moth (Lepidoptera: Geometridae) in northeastern North America with pheromone-baited traps and hybridization with the native Bruce spanworm (Lepidoptera: Geometridae). Ann Entomol Soc Am 103:135–145. https://doi.org/10.1603/AN09118
Elkinton JS, Lance D, Boettner G et al (2011) Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae). J Econ Entomol 104:494–500
Elkinton JS, Liebhold A, Boettner GH et al (2014) Invasion spread of Operophtera brumata in northeastern United States and hybridization with O-bruceata. Biol Invasions 16:2263–2272. https://doi.org/10.1007/s10530-014-0662-9
Elkinton J, Boettener G, Liebhold A et al (2015) Biology, spread, and biological control of winter moth in the eastern United States. USDA Forest Service Publication, New York, p 22
Ellison CK, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851. https://doi.org/10.1111/j.1420-9101.2008.01608.x
Embree DG (1966) Role of introduced parasites in control of winter moth in Nova Scotia. Can Entomol 98:1159–1168
Embree DG (1967) Effects of winter moth on growth and mortality of red oak in Nova Scotia. For Sci 13:295–299
Feder ME, Karr TL, Yang W et al (1999) Interaction of Drosophila and its endosymbiont Wolbachia: natural heat shock and the overcoming of sexual incompatibility. Am Zool 39:363–373. https://doi.org/10.1093/icb/39.2.363
Feder JL, Berlocher SH, Roethele JB et al (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci USA 100:10314–10319. https://doi.org/10.1073/pnas.1730757100
Fleury F, Vavre F, Ris N et al (2000) Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitology 121:493–500
Floate KD, Kyei-Poku GK, Coghlin PC (2006) Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Technol 16:767–788. https://doi.org/10.1080/09583150600699606
Garrick RC, Benavides E, Russello MA et al (2014) Lineage fusion in Galapagos giant tortoises. Mol Ecol 23:5276–5290. https://doi.org/10.1111/mec.12919
Gillespie DR, Finlayson T, Tonks NV et al (1978) Occurrence of winter moth, Operophtera-brumata (Lepidoptera, Geometridae), on southern Vancouver-Island, British-Columbia. Can Entomol 110:223–224
Guzman NV, Lanteri AA, Confalonieri VA (2012) Colonization ability of two invasive weevils with different reproductive modes. Evol Ecol 26:1371–1390. https://doi.org/10.1007/s10682-012-9564-4
Gwiazdowski RA, Elkinton JS, DeWaard JR, Sremac M (2013) Phylogeographic diversity of the winter moths Operophtera brumata and O. bruceata (Lepidoptera: Geometridae) in Europe and North America. Ann Entomol Soc Am 106:143–151. https://doi.org/10.1603/AN12033
Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries. J Hered 105:795–809. https://doi.org/10.1093/jhered/esu033
Havill NP, Elkinton JS, Andersen JC et al (2017) Asymmetric hybridization between non-native winter moth, Operophtera brumata (Lepidoptera: Geometridae), and native Bruce spanworm, O. bruceata, in the northeastern United States, assessed with novel microsatellites and SNPs. Bull Entomol Res 107:241–250. https://doi.org/10.1017/S0007485316000857
Hebert PDN, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817. https://doi.org/10.1073/pnas.0406166101
Hinton WF (1975) Natural hybridization and extinction of a population of Physalis-virginiana (Solanacea). Am J Bot 62:198–202
Hirsch H, Brunet J, Zalapa J et al (2017) Intra- and interspecific hybridization in invasive Siberian elm. Biol Invasions 19:1889–1904. https://doi.org/10.1007/s10530-017-1404-6
Hurst GD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B Biol Sci 272:1525–1534. https://doi.org/10.1098/rspb.2005.3056
Jaenike J, Dyer KA, Cornish C et al (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:1852–1862. https://doi.org/10.1371/journal.pbio.0040325
Kimberling DN, Miller JC, Penrose RL (1986) Distribution and parasitism of winter moth, Operophtera-brumata (Lepidoptera, Geometridae), in western Oregon. Environ Entomol 15:1042–1046. https://doi.org/10.1093/ee/15.5.1042
Kriesner P, Conner WR, Weeks AR et al (2016) Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evolution 70:979–997. https://doi.org/10.1111/evo.12923
Krojerová-Prokešová J, Barančeková M, Kawata Y et al (2017) Genetic differentiation between introduced Central European sika and source populations in Japan: effects of isolation and demographic events. Biol Invasions 19:2125–2141. https://doi.org/10.1007/s10530-017-1424-2
Leite NA, Correa AS, Michel AP et al (2017) Pan-American similarities in genetic structures of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) with implications for hybridization. Environ Entomol 46:1024–1034. https://doi.org/10.1093/ee/nvx088
Li Y, Stift M, van Kleunen M (2018) Admixture increases performance of an invasive plant beyond first-generation heterosis. J Ecol 106:1595–1606
MacPhee AW (1967) Winter moth Operophtera brumata (Lepidoptera - Geometridae) a new pest attacking apple orchards in Nova Scotia and its coldhardiness. Can Entomol 99:829–834. https://doi.org/10.4039/Ent99829-8
Mannai Y, Ezzine O, Hausmann A et al (2017) Budburst phenology and host use by Operophtera brumata (Linnaeus, 1758) (Lepidoptera: Geometridae) in three Mediterranean oak species. Ann For Sci 74:3. https://doi.org/10.1007/s13595-016-0600-3
Mesgaran MB, Lewis MA, Ades PK et al (2016) Hybridization can facilitate species invasions, even without enhancing local adaptation. Proc Natl Acad Sci USA 113:10210–10214. https://doi.org/10.1073/pnas.1605626113
Michel-Salzat A, Cordaux R, Bouchon D (2001) Wolbachia diversity in the Porcellionides pruinosus complex of species (Crustacea: Oniscidea): evidence for host-dependent patterns of infection. Heredity 87:428–434
Mochiah MB, Ngi-Song AJ, Overholt WA et al (2002) Wolbachia infection in Cotesia sesamiae (Hymenoptera: Braconidae) causes cytoplasmic incompatibility: implications for biological control. Biol Control 25:74–80. https://doi.org/10.1016/S1049-9644(02)00045-2
Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119
Nguyen DT, Spooner-Hart RN, Riegler M (2016) Loss of Wolbachia but not Cardinium in the invasive range of the Australian thrips species, Pezothrips kellyanus. Biol Invasions 18:197–214. https://doi.org/10.1007/s10530-015-1002-4
Prentis PJ, Wilson JRU, Dormontt EE et al (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294. https://doi.org/10.1016/j.tplants.2008.03.004
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Accessed 6 Mar 2017
Raghavendra K, Barik TK, Reddy BPN et al (2011) Malaria vector control: from past to future. Parasitol Res 108:757–779. https://doi.org/10.1007/s00436-010-2232-0
Reuter M, Pedersen JS, Keller L (2005) Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile. Heredity 94:364–369. https://doi.org/10.1038/sj.hdy.6800601
Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83
Roland J, Embree DG (1995) Biological-control of the winter moth. Annu Rev Entomol 40:475–492. https://doi.org/10.1146/annurev.en.40.010195.002355
Ross PA, Endersby NM, Hoffman AA (2016) Costs of three Wolbachia infections on the survival of Aedes aegypti larvae under starvation conditions. PLoS Negl Trop Dis 10:e0004320. https://doi.org/10.1371/journal.pntd.0004320
Roy V, Girondot M, Harry M (2015) The distribution of Wolbachia in Cubitermes (Termitidae, Termitinae) castes and colonies: a modelling approach. PLoS ONE 10:e0116070. https://doi.org/10.1371/journal.pone.0116070
Roy D, Lucek K, Walter RP, Seehausen O (2016) Hybrid ‘superswarm’ leads to rapid divergence and establishment of populations during a biological invasion. Mol Ecol 24:5394–5411. https://doi.org/10.1111/mec.13405
Schuler H, Bertheau C, Egan SP et al (2013) Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol Ecol 22:4101–4111. https://doi.org/10.1111/mec.12362/
Schuler H, Koppler K, Daxbock-Horvath S et al (2016) The hitchhiker’s guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol Ecol 25:1595–1609. https://doi.org/10.1111/mec.13571
Schwarz D, Shoemaker KD, Botteri NL, McPheron BA (2007) A novel preference for an invasive plant as a mechanism for animal hybrid speciation. Evolution 61:245–256. https://doi.org/10.1111/j.1558-5646.2007.00027.x
Schwenk K, Brede N, Streit B (2008) Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos Trans R Soc Lond B Biol Sci 363:2805–2811. https://doi.org/10.1098/rstb.2008.0055
Seehausen O, Takimoto G, Roy D et al (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44. https://doi.org/10.1111/j.1365-294X.2007.03529.x
Shoemaker DD, Katju V, Jaenike J (1999) Wolbachia and the evolution of reproductive isolation between Drosophila recens and Drosophila subquinaria. Evolution 53:1157–1164. https://doi.org/10.1111/j.1558-5646.1999.tb04529.x
Silva I, Van Meer MMM, Roskam MM et al (2000) Biological control potential of Wolbachia-infected versus uninfected wasps: laboratory and greenhouse evaluation of Trichogramma cordubensis and T. deion strains. Biocontrol Sci Technol 10:223–238. https://doi.org/10.1080/09583150050044501
Simmons MJ, Lee TD, Ducey MJ et al (2014) Effects of invasive winter moth defoliation on tree radial growth in eastern Massachusetts, USA. Insects 5:301–318. https://doi.org/10.3390/insects5020301
Szücs M, Eigenbrode SD, Schwarzlaender M et al (2012) Hybrid vigor in the biological control agent, Longitarsus jacobaeae. Evol Appl 5:489–497. https://doi.org/10.1111/j.1752-4571.2012.00268.x
Todesco M, Pascual MA, Owens GL et al (2016) Hybridization and extinction. Evol Appl 9:892–908. https://doi.org/10.1111/eva.12367
Turelli M, Cooper BS, Richardson KM et al (2018) Rapid-global spread of wRI-like Wolbachia across multiple Drosophila. Curr Biol 28:963–971. https://doi.org/10.1016/j.cub.2018.02.015
Turley AP, Moreira LA, O’Neill SL et al (2009) Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis 3:e516. https://doi.org/10.1371/journal.pntd.0000516
van den Hurk AF, Hall-Mendelin S, Pyke AT et al (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 6:e1892. https://doi.org/10.1371/journal.pntd.0001892
Verhoeven KJF, Macel M, Wolfe LM et al (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B Biol Sci 278:2–8. https://doi.org/10.1098/rspb.2010.1272
Vilatersana R, Sanz M, Galian A, Castells E (2016) The invasion of Senecio pterophorus across continents: multiple, independent introductions, admixture and hybridization. Biol Invasions 18:2045–2065. https://doi.org/10.1007/s10530-016-1150-1
Weeks AR, Reynolds KT, Hoffmann AA et al (2002) Wolbachia dynamics and host effects: what has (and has not) been demonstrated? Trends Ecol Evol 17:257–262. https://doi.org/10.1016/S0169-5347(02)02480-1
Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proc R Soc B Biol Sci 282:20150249. https://doi.org/10.1098/rspb.2015.0249
Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609. https://doi.org/10.1146/annurev.ento.42.1.587
Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969
White JA, Richards NK, Laugraud A et al (2015) Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microb Ecol 70:274–286. https://doi.org/10.1007/s00248-014-0561-8
Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053. https://doi.org/10.1046/j.1523-1739.2001.0150041039.x
Yang CC, Yu YC, Valles SM et al (2010) Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta. Biol Invasions 12:3307–3318. https://doi.org/10.1007/s10530-010-9724-9
Zabal-Aguirre M, Arroyo F, Bella JL (2010) Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone. Heredity 104:174–184. https://doi.org/10.1038/hdy.2009.106
Zabalou S, Riegler M, Theodorakopoulou M et al (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045. https://doi.org/10.1073/pnas.0403853101
Zhang Z, Schwartz S, Wagner L et al (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478
Zhou WG, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B Biol Sci 265:509–515. https://doi.org/10.1098/rspb.1998.0324
Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 48:864–872. https://doi.org/10.1111/j.1365-2664.2011.01984.x