Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians

Kin Onn Chan1, Stefan Hertwig2, Dario N. Neokleous2, Jana M. Flury3, Rafe M. Brown4
1Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, Singapore, 117377, Singapore
2Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland
3Leibniz-Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
4Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Dyche Hall, Lawrence, KS, 66045, USA

Tóm tắt

AbstractBackgroundThe 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universalCO1barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence (p-distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths.ResultsUsing empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwisep-distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content.ConclusionsTaken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost.

Từ khóa


Tài liệu tham khảo

Avise JC, Arnold J, Ball MR, Bermingham E, Lamb T, Neigel JE, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst. 1987;18:489–522.

Moritz C, Dowling TE, Brown WM. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst. 1987;18:269–92.

Wilson AC, Cann RL, Carrii SM, George M, Gyllenstenis ULFB, Kathleen M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc. 1985;26:375–400.

Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol. 1989;4:6–11.

Ballard JWO, Rand DM. The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst. 2005;36:621–42.

Rubinoff D, Holland BS. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol. 2005;54:952–61.

Dong Z, Wang Y, Li C, Li L, Men X. Mitochondrial DNA as a molecular marker in insect ecology: current status and future prospects. Ann Entomol Soc Am. 2021;114:470–6.

Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ. Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS ONE. 2007;2:e1109.

Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA. 2006;103:968–71.

Nishikawa K, Matsui M, Hoi-Sen Y, Ahmad N, Yambun P, Belabut DM, et al. Molecular phylogeny and biogeography of caecilians from Southeast Asia (Amphibia, Gymnophiona, Ichthyophiidae), with special reference to high cryptic species diversity in Sundaland. Mol Phylogenet Evol. 2012;63:714–23. https://doi.org/10.1016/j.ympev.2012.02.017.

McLeod DS. Of least concern? Systematics of a cryptic species complex: Limnonectes kuhlii (Amphibia: Anura: Dicroglossidae). Mol Phylogenet Evol. 2010;56:991–1000. https://doi.org/10.1016/j.ympev.2010.04.004.

Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B. 2003;270:313–21.

Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep. 2016;6:35275.

Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol. 2009;58:298–311.

Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE. 2013;8:e66213.

Tang CQ, Humphreys AM, Fontaneto D, Barraclough TG. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods Ecol Evol. 2014;5:1086–94. https://doi.org/10.1111/2041-210X.12246.

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017;33:1630–8.

Blair C, Bryson RW. Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Mol Ecol Resour. 2017;17:1168–82. https://doi.org/10.1111/1755-0998.12658.

Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc B. 2005;360:1859–68. https://doi.org/10.1098/rstb.2005.1717.

Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol. 2013;62:707–24.

Rach J, Bergmann T, Paknia O, De Salle R, Schierwater B, Hadrys H. The marker choice: unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PLoS ONE. 2017;12:e0174842.

Hertwig S, De Sá RO, Haas A. Phylogenetic signal and the utility of 12S and 16S mtDNA in frog phylogeny. J Zool Syst Evol Res. 2004;42:2–18.

Smith MA, Poyarkov NA, Hebert PDN. CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour. 2008;8:235–46.

Murphy RW, Crawford AJ, Bauer AM, Che J, Donnellan SC, Fritz U, et al. Cold Code: The global initiative to DNA barcode amphibians and nonavian reptiles. Mol Ecol Resour. 2013;13:161–7.

Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, et al. Universal COI primers for DNA barcoding amphibians. Mol Ecol Resour. 2012;12:247–58.

Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2:5.

Vences M, Nagy ZT, Sonet G, Verheyen E. DNA barcoding amphibians and reptiles. Methods Mol Biol. 2012;858:79–107.

Remigio EA, Hebert PDN. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogenet Evol. 2003;29:641–7.

Zheng L, He J, Lin Y, Cao W, Zhang W. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol Sin. 2014;33:55–76.

Goebel AM, Donnelly JM, Atz ME. PCR primers and amplification methods for 12S ribosomal DNA, the control region, Cytochrome Oxidase I, and Cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol Phylogenet Evol. 1999;11:163–99.

Darst CR, Cannatella DC. Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol Phylogenet Evol. 2004;31:462–75.

Chan KO, Wood PLJ, Anuar S, Muin MA, Quah ESH, Sumarli AXY, et al. A new species of upland Stream Toad of the genus Ansonia Stoliczka, 1870 (Anura: Bufonidae) from northeastern Peninsular Malaysia. Zootaxa. 2014;3764:427–40.

Chan KO, Hutter CR, Wood PLJ, Su Y-C, Brown RM. Gene flow increases phylogenetic structure and inflates cryptic species estimations: a case study on widespread Philippine Puddle Frogs (Occidozyga laevis). Syst Biol. 2022;71:40–57.

Rowley JJL, Le DTT, Hoang HD, Dau VQ, Cao TT. Two new species of Theloderma (Anura: Rhacophoridae) from Vietnam. Zootaxa. 2011;3098:1–20.

Chandramouli SR, Vasudevan K, Harikrishnan S, Dutta SK, Janani SJ, Sharma R, et al. A new genus and species of arboreal toad with phytotelmonous larvae, from the Andaman Islands, India (Lissamphibia, Anura, Bufonidae). Zookeys. 2016;2016:57–90.

Garg S, Biju SD. Molecular and morphological study of Leaping Frogs (Anura, Ranixalidae) with description of two new species. PLoS ONE. 2016;11:e0166326.

Rojas RR, Chaparro JC, de Carvalho VT, Ávila RW, Farias IP, Hrbek T, et al. Uncovering the diversity in the Amazophrynella minuta complex: integrative taxonomy reveals a new species of Amazophrynella (Anura, Bufonidae) from southern Peru. Zookeys. 2016;2016:43–71.

Wang J, Yang J, Li Y, Lyu Z, Zeng Z, Liu Z, et al. Morphology and molecular genetics reveal two new Leptobrachella species in southern China (Anura, Megophryidae). Zookeys. 2018;2018:105–37.

Al-Razi H, Maria M, Muzaffar SB. A new species of cryptic bush frog (anura, rhacophoridae, Raorchestes) from northeastern Bangladesh. Zookeys. 2020;2020:127–51.

Crottini A, Rosa GM, Penny SG, Cocca W, Holderied MW, Rakotozafy LMS, et al. A new stump-toed frog from the transitional forests of NW Madagascar (Anura, Microhylidae, Cophylinae, Stumpffia). Zookeys. 2020;2020:139–64.

Köhler G, Vargas J, Than NL, Schell T, Janke A, Pauls SU, et al. A taxonomic revision of the genus Phrynoglossus in Indochina with the description of a new species and comments on the classification within Occidozyginae (Amphibia, Anura, Dicroglossidae). Vertebr Zool. 2021;71:1–26.

Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning. Mol Ecol Resour. 2021;21:609–20.

Chan KO, Hutter CR, Wood PL, Grismer LL, Das I, Brown RM. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Mol Ecol. 2020;29:3970–87.

Wiens JJ. Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol. 2003;52:528–38.

Wiens JJ. Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? J Vertebr Paleontol. 2003;23:297–310.

Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol. 2004;21:1740–52.

Thomson RC, Shaffer HB. Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol. 2010;59:42–58.

Wiens JJ. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Syst Biol. 2005;54:731–42.

Wiens JJ, Morrill MC. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol. 2011;60:719–31.

Chan KO, Schoppe S, Rico ELB, Brown RM. Molecular systematic investigation of Philippine Puddle Frogs (Anura: Dicroglossidae: Occidozyga Kuhl and Van Hasselt 1822) reveal new candidate species and a novel pattern of species dyads. Philipp J Syst Biol. 2021;14:1–14.

Pauly GB, Hillis DM, Cannatella DC. The history of a nearctic colonization: molecular phylogenetics and biogeography of the nearctic toads (Bufo). Evolution (N Y). 2004;58:2517–35.

Xia Y, Gu HF, Peng R, Chen Q, Zheng YC, Murphy RW, et al. COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol Ecol Resour. 2012;12:48–56.

Rockney HJ, Ofori-Boateng C, Porcino N, Leaché AD. A comparison of DNA barcoding markers in West African frogs. Afr J Herpetol. 2015;64:135–47.

Maya-Soriano MJ, Holt WV, Lloyd RE. Biobanked amphibian samples confirmed to species level using 16S rRNA DNA barcodes. Biopreserv Biobank. 2012;10:22–8.

Grosjean S, Ohler A, Chuaynkern Y, Cruaud C, Hassanin A. Improving biodiversity assessment of anuran amphibians using DNA barcoding of tadpoles. Case studies from Southeast Asia. C R Biol. 2015;338:351–61. https://doi.org/10.1016/j.crvi.2015.03.015.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.

Flury JM, Haas A, Brown R, Das I, Yong Min P, Boon-Hee K, et al. Unexpectedly high levels of lineage diversity in Sundaland Puddle Frogs (Dicroglossidae: Occidozyga Kuhl and Van Hasselt, 1822). Mol Phylogenet Evol. 2021;163:107210.

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/msu300.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–22. https://doi.org/10.1093/molbev/msx281.

Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.