Wide-field, high-resolution Fourier ptychographic microscopy

Nature Photonics - Tập 7 Số 9 - Trang 739-745 - 2013
Guoan Zheng1, Roarke Horstmeyer2, Changhuei Yang2
1Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
2Electrical Engineering, California Institute of Technology, Pasadena, USA#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lohmann, A. W., Dorsch, R. G., Mendlovic, D., Zalevsky, Z. & Ferreira, C. Space–bandwidth product of optical signals and systems. J. Opt. Soc. Am. A 13, 470–473 (1996).

Denis, L., Lorenz, D., Thiébaut, E., Fournier, C. & Trede, D. Inline hologram reconstruction with sparsity constraints. Opt. Lett. 34, 3475–3477 (2009).

Xu, W., Jericho, M., Meinertzhagen, I. & Kreuzer, H. Digital in-line holography for biological applications. Proc. Natl Acad. Sci. USA 98, 11301–11305 (2001).

Greenbaum, A. et al. Increased space–bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3, 1717 (2013).

Zheng, G., Lee, S. A., Antebi, Y., Elowitz, M. B. & Yang, C. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl Acad. Sci. USA 108, 16889–16894 (2011).

Zheng, G., Lee, S. A., Yang, S. & Yang, C. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip 10, 3125–3129 (2010).

Turpin, T., Gesell, L., Lapides, J. & Price, C. Theory of the synthetic aperture microscope. Proc. SPIE 2566, 230–240 (1995).

Di, J. et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning. Appl. Opt. 47, 5654–5659 (2008).

Hillman, T. R., Gutzler, T., Alexandrov, S. A. & Sampson, D. D. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express 17, 7873–7892 (2009).

Granero, L., Micó, V., Zalevsky, Z. & García, J. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information. Appl. Opt. 49, 845–857 (2010).

Kim, M. et al. High-speed synthetic aperture microscopy for live cell imaging. Opt. Lett. 36, 148–150 (2011).

Schwarz, C. J., Kuznetsova, Y. & Brueck, S. Imaging interferometric microscopy. Opt. Lett. 28, 1424–1426 (2003).

Feng, P., Wen, X. & Lu, R. Long-working-distance synthetic aperture Fresnel off-axis digital holography. Opt. Express 17, 5473–5480 (2009).

Mico, V., Zalevsky, Z., García-Martínez, P. & García, J. Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 23, 3162–3170 (2006).

Yuan, C., Zhai, H. & Liu, H. Angular multiplexing in pulsed digital holography for aperture synthesis. Opt. Lett. 33, 2356–2358 (2008).

Mico, V., Zalevsky, Z. & García, J. Synthetic aperture microscopy using off-axis illumination and polarization coding. Opt. Commun. 276, 209–217 (2007).

Alexandrov, S. & Sampson, D. Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency. J. Opt. 10, 025304 (2008).

Tippie, A. E., Kumar, A. & Fienup, J. R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express 19, 12027–12038 (2011).

Gutzler, T., Hillman, T. R., Alexandrov, S. A. & Sampson, D. D. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue. Opt. Lett. 35, 1136–1138 (2010).

Alexandrov, S. A., Hillman, T. R., Gutzler, T. & Sampson, D. D. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 97, 168102 (2006).

Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. R. Soc. Lond. A 339, 521–553 (1992).

Faulkner, H. M. L. & Rodenburg, J. M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004).

Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

Dierolf, M. et al. Ptychographic coherent diffractive imaging of weakly scattering specimens. New J. Phys. 12, 035017 (2010).

Maiden, A. M., Rodenburg, J. M. & Humphry, M. J. Optical ptychography: a practical implementation with useful resolution. Opt. Lett. 35, 2585–2587 (2010).

Humphry, M., Kraus, B., Hurst, A., Maiden, A. & Rodenburg, J. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2012).

Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987).

Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

Fienup, J. R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint. Opt. Express 14, 498–508 (2006).

Levoy, M., Ng, R., Adams, A., Footer, M. & Horowitz, M. Light field microscopy. ACM Trans. Graphics 25, 924–934 (2006).

Levoy, M., Zhang, Z. & McDowall, I. Recording and controlling the 4D light field in a microscope using microlens arrays. J. Microsc. 235, 144–162 (2009).

Arimoto, H. & Javidi, B. Integral three-dimensional imaging with digital reconstruction. Opt. Lett. 26, 157–159 (2001).

Hong, S.-H., Jang, J.-S. & Javidi, B. Three-dimensional volumetric object reconstruction using computational integral imaging. Opt. Express 12, 483–491 (2004).

Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

Tyson, R. Principles of Adaptive Optics (CRC Press, 2010).

Brady, D. et al. Multiscale gigapixel photography. Nature 486, 386–389 (2012).

Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 16, 7264–7278 (2008).

Zheng, G., Kolner, C. & Yang, C. Microscopy refocusing and dark-field imaging by using a simple LED array. Opt. Lett. 36, 3987–3989 (2011).

Colomb, T. et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation. Appl. Opt. 45, 851–863 (2006).

Zheng, G., Ou, X., Horstmeyer, R. & Yang, C. Characterization of spatially varying aberrations for wide field-of-view microscopy. Opt. Express 21, 15131–15143 (2013).

Wu, J. et al. Wide field-of-view microscope based on holographic focus grid illumination. Opt. Lett. 35, 2188–2190 (2010).

Wu, J., Zheng, G., Li, Z. & Yang, C. Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination. Opt. Lett. 36, 2179–2181 (2011).

Reinhard, E. et al. High Dynamic Range Imaging: Acquisition, Display, and Image-based Lighting (Morgan Kaufmann, 2010).

Gunturk, B. K. & Li, X. Image Restoration: Fundamentals and Advances Vol. 7 (CRC Press, 2012).