Wide-Baseline Image Matching with Projective View Synthesis and Calibrated Geometric Verification

Lukas Roth1, Andrea A. Kühn1, Helmut Mayer1
1Institute for Applied Computer Science, Bundeswehr University Munich, Neubiberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arandjelović R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 2911–2918. doi: 10.1109/CVPR.2012.6248018

Bay H, Ess A, Tuytelaars T, van Gool L (2008) Speeded-up robust features (SURF). Comp Vis Image Underst 110(3):346–359. doi: 10.1016/j.cviu.2007.09.014

Cai GR, Jodoin PM, Li SZ, Wu YD, Su SZ, Huang ZK (2013) Perspective-SIFT: an efficient tool for low-altitude remote sensing image registration. Signal Process 93(11):3088–3110. doi: 10.1016/j.sigpro.2013.04.008

Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Daniilidis K, Maragos P, Paragios N (eds) Computer Vision—ECCV 2010, Lecture Notes in Computer Science, vol 6314. Springer, pp 778–792. doi: 10.1007/978-3-642-15561-1_56

Chum O, Matas J (2005) Matching with PROSAC—progressive sample consensus. In: 2005 IEEE conference on computer vision and pattern recognition (CVPR), vol 1, pp 220–226. doi: 10.1109/CVPR.2005.221

Chum O, Matas J, Kittler J (2003) Locally optimized RANSAC. In: Goos G, Hartmanis J, van Leeuwen J, Michaelis B, Krell G (eds) Pattern Recognition, Lecture Notes in Computer Science, vol 2781. Springer, Berlin, pp 236–243. doi: 10.1007/978-3-540-45243-0_31

Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395. doi: 10.1145/358669.358692

Hartley R (1997) In defense of the eight-point algorithm. IEEE Trans Pattern Anal Mach Intell 19(6):580–593. doi: 10.1109/34.601246

Hartmann W, Havlena M, Schindler K (2016) Recent developments in large-scale tie-point matching. ISPRS J Photogramm Remote Sens 115:47–62. doi: 10.1016/j.isprsjprs.2015.09.005

Heckbert P (1986) Survey of texture mapping. IEEE Comput Graph Appl 6(11):56–67. doi: 10.1109/MCG.1986.276672

Lebeda K, Matas J, Chum O (2012) Fixing the locally optimized RANSAC. In: Bowden R, Collomosse J, Mikolajczyk K (eds) British machine vision conference 2012, pp 95.1–95.11. doi: 10.5244/C.26.95

Lenc K, Matas J, Mishkin D (2014) A few things one should know about feature extraction, description and matching. In: Kúkelová Z, Heller J (eds) CVWW 2014. Czech Society for Cybernetics and Informatics, Czech Pattern Recognition Society Group, Prague, pp 67–74

Liu W, Wang Y, Chen J, Guo J, Lu Y (2012) A completely affine invariant image-matching method based on perspective projection. Mach Vis Appl 23(2):231–242. doi: 10.1007/s00138-011-0347-7

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Marshall D, Rosin PL (eds) British machine vision conference 2002, pp 36.1–36.10. doi: 10.5244/C.16.36

Mayer H, Bartelsen J, Hirschmüller H, Kuhn A (2012) Dense 3D reconstruction from wide baseline image sets. In: Dellaert F, Frahm JM, Pollefeys M, Leal-Taixé L, Rosenhahn B (eds) Outdoor and large-scale real-world scene analysis, Lecture Notes in Computer Science, vol 7474. Springer, Berlin, pp 285–304. doi: 10.1007/978-3-642-34091-8_13

Mikolajczyk K, Schmid C (2002) An affine invariant interest point detector. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer Vision—ECCV 2002, Lecture Notes in Computer Science, vol 2350. Springer, Berlin, pp 128–142. doi: 10.1007/3-540-47969-4_9

Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72. doi: 10.1007/s11263-005-3848-x

Mishkin D, Matas J, Perdoch M (2015) MODS: fast and robust method for two-view matching. Comput Vis Image Underst 141:81–93. doi: 10.1016/j.cviu.2015.08.005

Moisan L, Stival B (2004) A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. Int J Comput Vis 57(3):201–218. doi: 10.1023/B:VISI.0000013094.38752.54

Moreels P, Perona P (2007) Evaluation of features detectors and descriptors based on 3D objects. Int J Comput Vis 73(3):263–284. doi: 10.1007/s11263-006-9967-1

Morel JM, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison. SIAM J Imaging Sci 2(2):438–469. doi: 10.1137/080732730

Nistér D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–770. doi: 10.1109/TPAMI.2004.17

Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Leonardis A, Bischof H, Pinz A (eds) Computer Vision—ECCV 2006, Lecture Notes in Computer Science, vol 3951. Springer, Berlin, pp 430–443. doi: 10.1007/11744023_34

Szeliski R (2011) Computer vision: algorithms and applications. Springer, London. doi: 10.1007/978-1-84882-935-0

Torr P, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78(1):138–156. doi: 10.1006/cviu.1999.0832