Why good data analysts need to be critical synthesists. Determining the role of semantics in data analysis
Tài liệu tham khảo
Anderson, 2008, The end of theory: The data deluge makes the scientific method obsolete, Wired mag., 16
Hey, 2009
Jacobs, 2009, The pathologies of big data, Commun. ACM, 52, 36, 10.1145/1536616.1536632
Jagadish, 2014, Big data and its technical challenges, Commun. ACM, 57, 86, 10.1145/2611567
Boyd, 2012, Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon, Inf. Commun. Soc., 15, 662, 10.1080/1369118X.2012.678878
Lazer, 2014, The parable of google flu: traps in big data analysis, Science, 343
Ostermann, 2015, Advancing science with VGI: Reproducibility and replicability of recent studies using VGI, Trans. GIS
McNutt, 2014, Journals unite for reproducibility, Science, 346, 10.1126/science.aaa1724
González-Beltrán, 2015, From peer-reviewed to peer-reproduced in scholarly publishing: The complementary roles of data models and workflows in bioinformatics, PLoS ONE, 10, e0127612, 10.1371/journal.pone.0127612
Drummond, 2009, Replicability is not reproducibility: Nor is it good science
Edwards, 2011, Science friction: Data, metadata, and collaboration, Soc. Stud. Sci., 41, 667, 10.1177/0306312711413314
Lagoze, 2014, Big data, data integrity, and the fracturing of the control zone, Big Data Soc., 1, 1, 10.1177/2053951714558281
Voinov, 2016, Modelling with stakeholders Next generation, Environ. Modell. Softw., 77, 196, 10.1016/j.envsoft.2015.11.016
Crawford, 2012, Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon, Inf. Commun. Soc., 15, 662, 10.1080/1369118X.2012.678878
Janowicz, 2014, Why the data train needs semantic rails, AI Mag., 36
Hausenblas, 2009, Scovo: Using statistics on the web of data, 708
Ristoski, 2016, Semantic web in data mining and knowledge discovery: A comprehensive survey, Web Semant. Sci. Serv. Agents World Wide Web, 36, 1, 10.1016/j.websem.2016.01.001
Stasch, 2014, Meaningful spatial prediction and aggregation, Environ. Modell. Softw., 51, 149, 10.1016/j.envsoft.2013.09.006
Box, 1976, Science and statistics, J. Amer. Statist. Assoc., 71, 791, 10.1080/01621459.1976.10480949
Blei, 2014, Build, compute, critique, repeat: Data analysis with latent variable models, Ann. Rev. Stat. Appl., 1, 203, 10.1146/annurev-statistics-022513-115657
Senn, 2011, You may believe you are a Bayesian but you are probably wrong, Ration. Market. Morals, 2
Scheider, 2015, How to talk to each other via computers: Semantic interoperability as conceptual imitation, 97
K.R. Popper, Logik der Forschung, Vol. 4, JCB Mohr (Paul Siebeck), 1982.
Quine, 1951, Two dogmas of empiricism, Phil. Rev., 60, 20, 10.2307/2181906
Bartley, 1968, Theories of demarcation between science and metaphysics, vol. 3, 40
Feyerabend, 1963, 3
Feyerabend, 1993
S. Scheider, M. May, A method for inductive estimation of public transport traffic using spatial network characteristics, in: Proceedings of 10th AGILE International Conference on Geographic Information Science, 2007.
Goodman, 1983
Remsen, 2016, The use and limits of scientific names in biological informatics, ZooKeys, 550, 207, 10.3897/zookeys.550.9546
Gupta, 2015, Adventures of categories: Modelling the evolution of categories during scientific investigation, 1
T. Mitchell, The need for biases in learning generalizations, Cbm-tr 5-110, Rutgers University, 1980.
Sober, 2002, What is the problem of simplicity?, 13
Gigerenzer, 2009, Homo heuristicus: Why biased minds make better inferences, Top. Cogn. Sci., 1, 107, 10.1111/j.1756-8765.2008.01006.x
Gigerenzer, 2015, On the supposed evidence for libertarian paternalism, Rev. Phil. Psychol., 1
Hastie, 2005, The elements of statistical learning: data mining, inference and prediction, Math. Intelligencer, 27, 83, 10.1007/BF02985802
May, 2008, A vector-geometry based spatial knn-algorithm for traffic frequency predictions, 442
May, 2008, Pedestrian flow prediction in extensive road networks using biased observational data, 67
Leisch, 2011, Executable papers for the r community: The r2 platform for reproducible research, Procedia Comput. Sci., 4, 618, 10.1016/j.procs.2011.04.065
Scheider, 2017, Semantic typing of linked geoprocessing workflows, Int. J. Digit. Earth
K. Hinsen, Computational science: shifting the focus from tools to models, F1000Research 3 (101). http://dx.doi.org/10.12688/f1000research.3978.2.
Kuhn, 2015, Designing a language for spatial computing
Scheider, 2012
Madin, 2007, An ontology for describing and synthesizing ecological observation data, Ecol. Inform., 2, 279, 10.1016/j.ecoinf.2007.05.004
Sheth, 2008, Semantic sensor web, IEEE Internet Comput., 12, 78, 10.1109/MIC.2008.87
Henson, 2009, SemSOS: Semantic sensor observation service, 44
Horsburgh, 2009, An integrated system for publishing environmental observations data, Environ. Model. Softw., 24, 879, 10.1016/j.envsoft.2009.01.002
Regueiro, 2017, Semantic mediation of observation datasets through sensor observation services, Future Gener. Comput. Syst., 67, 47, 10.1016/j.future.2016.08.013
Cox, 2016, Ontology for observations and sampling features, with alignments to existing models, Semant. Web, 8, 453, 10.3233/SW-160214
Janowicz, 2010, Semantic enablement for spatial data infrastructures, Trans. GIS, 14, 111, 10.1111/j.1467-9671.2010.01186.x
Corcho, 2010, Five challenges for the semantic sensor web, Semant. Web, 1, 121, 10.3233/SW-2010-0005
Wang, 2005
Fürber, 2010, Using semantic web resources for data quality management, 211
Paulheim, 2013, Exploiting linked open data as background knowledge in data mining
Scheider, 2016, Knowing whether spatio-temporal analysis procedures are applicable to datasets
Kuhn, 2012, Core concepts of spatial information for transdisciplinary research, Int. J. Geogr. Inf. Sci., 26, 2267, 10.1080/13658816.2012.722637
Spinsanti, 2013, Automated geographic context analysis for volunteered information, Appl. Geogr., 43, 36, 10.1016/j.apgeog.2013.05.005
Belhajjame, 2015, Using a suite of ontologies for preserving workflow-centric research objects, Web Semant. Sci. Serv. Agents World Wide Web, 32, 16, 10.1016/j.websem.2015.01.003
Alper, 2013, Small is beautiful: Summarizing scientific workflows using semantic annotations, 318
Mitchell, 1997
Mitchell, 1986, Explanation-based generalization: A unifying view, Mach. Learn., 1, 47, 10.1007/BF00116250
Davis, 2015, Commonsense reasoning and commonsense knowledge in artificial intelligence, Commun. ACM, 58, 92, 10.1145/2701413
Mitchell, 1997, Does machine learning really work?, AI Mag., 18, 11
d’Amato, 2014, Inductive reasoning and machine learning for the semantic web, Semant. Web, 5, 3, 10.3233/SW-130103
Stumme, 2006, Semantic web mining: State of the art and future directions, Web Sem.: Sci. Serv. Agents World Wide Web, 4, 124, 10.1016/j.websem.2006.02.001
Capadisli, 2015, Linked sdmx data, Semant. Web, 6, 105, 10.3233/SW-130123
Nigro, 2007
Mulwad, 2010, Using linked data to interpret tables, 109
Kietz, 2014, “Semantics Inside!” but let’s not tell the data miners: Intelligent support for data mining, 706
Paulheim, 2012, Generating possible interpretations for statistics from linked open data, 560
Rijgersberg, 2013, Ontology of units of measure and related concepts, Semant. Web, 4, 3, 10.3233/SW-2012-0069
Compton, 2012, The SSN ontology of the W3C semantic sensor network incubator group, Web Semant. Sci. Serv. Agents World Wide Web, 17, 25, 10.1016/j.websem.2012.05.003
Probst, 2006, Ontological analysis of observations and measurements, 304
Russ, 2011, Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case, BMC Bioinformatics, 12, 1, 10.1186/1471-2105-12-351
Janowicz, 2012, Geospatial semantics and linked spatiotemporal data–past, present, and future, Semant. Web, 3, 321, 10.3233/SW-2012-0077
Talia, 2013, Workflow systems for science: Concepts and tools, ISRN Softw. Eng., 2013, 1, 10.1155/2013/404525
Ludäscher, 2006, Scientific workflow management and the kepler system, Concurr. Comput.: Pract. Exper., 18, 1039, 10.1002/cpe.994
Berthold, 2009, Knime-the konstanz information miner: version 2.0 and beyond, AcM SIGKDD Explor. Newslett., 11, 26, 10.1145/1656274.1656280
Demšar, 2013, Orange: data mining toolbox in python, J. Mach. Learn. Res., 14, 2349
Oinn, 2004, Taverna: a tool for the composition and enactment of bioinformatics workflows, Bioinformatics, 20, 3045, 10.1093/bioinformatics/bth361
Freire, 2006, Managing rapidly-evolving scientific workflows, 10
Deelman, 2004, Pegasus: Mapping scientific workflows onto the grid, 11
Gil, 2007, Wings for pegasus: Creating large-scale scientific applications using semantic representations of computational workflows, 1767
de Jesus, 2012, WPS orchestration using the taverna workbench: The eScience approach, Comput. Geosci., 47, 75, 10.1016/j.cageo.2011.11.011
Missier, 2013, The W3C PROV family of specifications for modelling provenance metadata, 773
Gahegan, 2014, Re-envisioning data description using Peirce’s pragmatics, 142
Scheider, 2016, Modeling spatiotemporal information generation, Int. J. Geogr. Inf. Sci., 30, 1980
Bishr, 2013, Trust and reputation models for quality assessment of human sensor observations, 53
Deelman, 2011, Wings: Intelligent workflow-based design of computational experiments, IEEE Intell. Syst., 1, 62
Gangemi, 2005, Ontology design patterns for semantic web content, 262