Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference

Springer Science and Business Media LLC - Tập 14 - Trang 902-911 - 2013
Giovanni Pezzulo1
1National Research Council, Institute of Cognitive Sciences and Technologies, Rome, Italy

Tóm tắt

Why are we scared by nonperceptual entities such as the bogeyman, and why does the bogeyman only visit us during the night? Why does hearing a window squeaking in the night suggest to us the unlikely idea of a thief or a killer? And why is this more likely to happen after watching a horror movie? To answer these and similar questions, we need to put mind and body together again and consider the embodied nature of perceptual and cognitive inference. Predictive coding provides a general framework for perceptual inference; I propose to extend it by including interoceptive and bodily information. The resulting embodied predictive coding inference permits one to compare alternative hypotheses (e.g., is the sound I hear generated by a thief or the wind?) using the same inferential scheme as in predictive coding, but using both sensory and interoceptive information as evidence, rather than just considering sensory events. If you hear a window squeaking in the night after watching a horror movie, you may consider plausible a very unlikely hypothesis (e.g., a thief, or even the bogeyman) because it explains both what you sense (e.g., the window squeaking in the night) and how you feel (e.g., your high heart rate). The good news is that the inference that I propose is fully rational and gives minds and bodies equal dignity. The bad news is that it also gives an embodiment to the bogeyman, and a reason to fear it.

Tài liệu tham khảo

Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411, 305–309. doi:10.1038/35077083 Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi:10.1146/annurev.psych.59.103006.093639 Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain, 133, 1265–1283. doi:10.1093/brain/awq010 Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–204. doi:10.1017/S0140525X12000477 Damasio, A. (2000). The feeling of what happens: Body and emotion in the making of consciousness. New York, NY: Harcourt Brace. Dayan, P., Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine. Neural Computation, 7, 889–904. Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169. doi:10.1016/j.tics.2004.02.002 Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. doi:10.3389/fnhum.2010.00215 Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360, 815–836. doi:10.1098/rstb.2005.1622 Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138. doi:10.1038/nrn2787 Friston, K., Adams, R. A., Perrinet, L., & Breakspear, M. (2012). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 151. doi:10.3389/fpsyg.2012.00151 Friston, K., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE, 4, e6421. doi:10.1371/journal.pone.0006421 Garrett, A. S., & Maddock, R. J. (2001). Time course of the subjective emotional response to aversive pictures: Relevance to fMRI studies. Psychiatry Research, 108, 39–48. Grau-Moya, J., Hez, E., Pezzulo, G., & Braun, D. A. (2013). The effect of model uncertainty on cooperation in sensorimotor interactions. Journal of the Royal Society Interface, 10, 10130554. doi:10.1098/rsif.2013.0554 Grau-Moya, J., Ortega, P. A., & Braun, D. A. (2012). Risk-sensitivity in Bayesian sensorimotor integration. PLoS Computational Biology, 8, e1002698. doi:10.1371/journal.pcbi.1002698 Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–396. Halloy, A. (2012). Gods in the Flesh: Learning Emotions in the. Xangô Possession Cult (Brazil). Ethnos: Journal of Anthropology, 77, 177-202. doi:10.1080/00141844.2011.586465 Helmholtz, H. von. (1962). Concerning the perceptions in general. In J. P. C. Southall (Ed. and Trans.), Helmholtz’s Treatise on physiological optics (Vol. 3). New York, NY: Dover. (Original work published 1866). Hinton, G. E. (2007a). Learning multiple layers of representation. Trends in Cognitive Sciences, 11, 428–434. doi:10.1016/j.tics.2007.09.004 Hinton, G. E. (2007b). To recognize shapes, first learn to generate images. Progress in Brain Research, 165, 535–547. doi:10.1016/S0079-6123(06)65034-6 Hirstein, W., & Ramachandran, V. S. (1997). Capgras syndrome: A novel probe for understanding the neural representation of the identity and familiarity of persons. Proceedings of the Royal Society B, 264, 437–444. doi:10.1098/rspb.1997.0062 Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701. doi:10.1016/j.cognition.2008.05.010 James, W. (1890). The principles of psychology. New York, NY: Henry Holt. Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58, 697–720. doi:10.1037/0003-066X.58.9.697 Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4, e1000209. doi:10.1371/journal.pcbi.1000209 Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT Press. Machens, C. K., Gollisch, T., Kolesnikova, O., & Herz, A. V. M. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47, 447–456. doi:10.1016/j.neuron.2005.06.015 Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80. doi:10.1016/j.tics.2011.11.018 Montague, P. R., & King-Casas, B. (2007). Efficient statistics, common currencies and the problem of reward-harvesting. Trends in Cognitive Sciences, 11, 514–519. doi:10.1016/j.tics.2007.10.002 Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179–225. doi:10.1007/s11023-008-9095-5 Pezzulo, G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind and Language, 26, 78–114. Pezzulo, G. (2012). An active inference view of cognitive control. Frontiers in Theoretical and Philosophical Psychology, 3, 478. doi:10.3389/fpsyg.2012.00478 Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., & Spivey, M. J. (2011). The mechanics of embodiment: A dialog on embodiment and computational modeling. Frontiers in Cognition, 2(5), 1–21. doi:10.3389/fpsyg.2011.00005 Pezzulo, G., Barsalou, L. W., Cangelosi, A., Fischer, M. H., McRae, K., & Spivey, M. J. (2013). Computational grounded cognition: A new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 3, 612. doi:10.3389/fpsyg.2012.00612 Pezzulo, G., & Castelfranchi, C. (2009). Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychological Research, 73, 559–577. Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87. doi:10.1038/4580 Roy, D. (2005). Semiotic schemas: A framework for grounding language in action and perception. Artificial Intelligence, 167, 170–205. Seth, A. K., Suzuki, K., & Critchley, H. D. (2012). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395. doi:10.3389/fpsyg.2011.00395 Spivey, M. (2007). The continuity of mind. Oxford, UK: Oxford University Press. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23, 645–665. disc. 665–726. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279–1285. doi:10.1126/science.1192788 Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32, 3665–3678. doi:10.1523/JNEUROSCI.5003-11.2012 Wilson-Mendenhall, C. D., Barrett, L. F., Simmons, W. K., & Barsalou, L. W. (2011). Grounding emotion in situated conceptualization. Neuropsychologia, 49, 1105–1127. doi:10.1016/j.neuropsychologia.2010.12.032