Why do EMD‐based methods improve prediction? A multiscale complexity perspective

Journal of Forecasting - Tập 38 Số 7 - Trang 714-731 - 2019
Jichang Dong1, Wei Dai2,1, Ling Tang3, Lean Yu4
1School of Economics and Management, University of Chinese Academy of Sciences, Beijing, China
2JD Digital, Beijing, China
3School of Economics and Management, Beihang University, Beijing, China
4School of Economics and Management, Beijing University of Chemical Technology, Beijing, China

Tóm tắt

AbstractEmpirical mode decomposition (EMD)‐based ensemble methods have become increasingly popular in the research field of forecasting, substantially enhancing prediction accuracy. The key factor in this type of method is the multiscale decomposition that immensely mitigates modeling complexity. Accordingly, this study probes this factor and makes further innovations from a new perspective of multiscale complexity. In particular, this study quantitatively investigates the relationship between the decomposition performance and prediction accuracy, thereby developing (1) a novel multiscale complexity measurement (for evaluating multiscale decomposition), (2) a novel optimized EMD (OEMD) (considering multiscale complexity), and (3) a novel OEMD‐based forecasting methodology (using the proposed OEMD in multiscale analysis). With crude oil and natural gas prices as samples, the empirical study statistically indicates that the forecasting capability of EMD‐based methods is highly reliant on the decomposition performance; accordingly, the proposed OEMD‐based methods considering multiscale complexity significantly outperform the benchmarks based on typical EMDs in prediction accuracy.

Từ khóa


Tài liệu tham khảo

10.1016/j.ymssp.2013.06.012

10.1155/2012/431512

10.1016/j.medengphy.2008.04.005

10.1198/073500102753410444

10.1016/j.energy.2016.02.045

10.1016/j.eneco.2017.08.006

10.1016/j.bspc.2010.11.001

10.1109/TNN.2006.875977

10.1098/rspa.1998.0193

10.1002/for.3980100506

10.1016/j.ijleo.2015.05.145

10.1109/MAES.2003.1246587

10.1007/978-3-319-12883-2_13

10.1121/1.4971015

10.1098/rspa.2009.0502

10.1109/LSP.2007.904710

10.1002/j.1538-7305.1948.tb01338.x

Singh R., 2007, Application of extreme learning machine method for time series analysis, International Journal of Intelligent Technology, 2, 256

10.1016/j.solener.2018.02.006

10.1142/S0219622015400015

10.1016/j.chaos.2015.09.002

10.1016/j.asoc.2017.03.008

10.1007/s10479-014-1595-5

10.1016/j.asoc.2017.02.013

10.1016/j.energy.2018.05.146

10.1142/S0219622013500193

10.1016/j.apenergy.2011.12.030

10.1007/s11517-007-0268-9

10.1016/j.physa.2014.12.001

10.1016/j.energy.2016.06.075

10.1016/j.ins.2012.07.049

10.1142/S1793536909000047

10.1142/S1793536910000422

10.1016/j.engappai.2015.04.016

Yu L., 2015, A hybrid grid‐GA‐based LSSVR learning paradigm for crude oil price forecasting, Neural Computing and Applications, 27, 1

10.1016/j.eneco.2015.07.005

10.1016/j.eneco.2008.05.003

10.1002/for.2418

10.1016/j.ijforecast.2017.11.005

10.1002/for.2502

10.1016/j.sigpro.2013.09.013