Whole-tumor histogram analysis of apparent diffusion coefficient maps in grading diagnosis of ependymoma
Tóm tắt
Từ khóa
Tài liệu tham khảo
DeWitt JC, Mock A, Louis DN. The 2016 WHO classification of central nervous system tumors: what neurologists need to know[J]. Curr Opin Neurol. 2017;30(6):643–9. https://doi.org/10.1097/wco.0000000000000490.
Kobyakov GL, Absalyamova OV, Poddubskiy AA, et al. The 2016 WHO classification of primary central nervous system tumors: a clinician’s view[J]. Zh Vopr Neirokhir Im N N Burdenko. 2018;82(3):88–96. https://doi.org/10.17116/neiro201882388.
Poretti A, Meoded A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review of the literature[J]. J Magn Reson Imaging. 2012;35(1):32–47. https://doi.org/10.1002/jmri.22722(Epub 2011 Oct 11).
Wu CC, Guo WY, Chung WY, et al. Tumor pseudoprogression and true progression following gamma knife radiosurgery for recurrent ependymoma [J]. J Chin Med Assoc. 2016;79(5):292–8. https://doi.org/10.1016/j.jcma.2015.10.005.
Zitouni S, Koc G, Doganay S, et al. Apparent diffusion coefficient in differentiation of pediatric posterior fossa tumors[J]. Jpn J Radiol. 2017;35(8):448–53. https://doi.org/10.1007/s11604-017-0652-9(Epub 2017 May 26).
Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade[J]. Radiology. 2011;261(3):882–90. https://doi.org/10.1148/radiol.11110686.
Andersen MB, Harders SW, Ganeshan B, et al. CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer[J]. Acta Radiol. 2016;57(6):669–76. https://doi.org/10.1177/0284185115598808.
Jung SC, Yeom JA, Kim JH, et al. Glioma: application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading[J]. AJNR. 2014;35(6):1103–10. https://doi.org/10.3174/ajnr.A3825.
Andersen MB, Harders SW, Ganeshan B, et al. CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer[J]. Acta Radiol. 2016;57(6):669–76. https://doi.org/10.1177/0284185115598808.
Zhang Z, Song C, Zhang Y, et al. Apparent diffusion coefficient (ADC) histogram analysis: differentiation of benign from malignant parotid gland tumors using readout-segmented diffusion-weighted imaging[J]. Dentomaxillofac Radiol. 2019;9:20190100. https://doi.org/10.1259/dmfr.20190100.
Shindo T, Fukukura Y, Umanodan T, et al. Histogram analysis of apparent diffusion coefficient in differentiating pancreatic adenocarcinoma and neuroendocrine tumor[J]. Medicine (Baltimore). 2016;95:e2574. https://doi.org/10.1097/MD.0000000000002574.
Wang W, Cheng J, Zhang Y, et al. Use of apparent diffusion coefficient histogram in differentiating between medulloblastoma and pilocytic astrocytoma in children[J]. Med Sci Monit. 2018;24:6107–12. https://doi.org/10.12659/MSM.909136.
Zulfiqar M, Yousem DM, Lai H. ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor?—a meta-analysis[J]. AJR Am J Roentgenol. 2013;200(3):624–9. https://doi.org/10.2214/AJR.12.8679.
Lin X, Lee M, Buck O, et al. Diagnostic accuracy of T1-weighted dynamic contrast-enhanced-MRI and DWI-ADC for differentiation of glioblastoma and primary CNS lymphoma[J]. AJNR Am J Neuroradiol. 2017;38(3):485–91. https://doi.org/10.3174/ajnr.a5023.
Zhang X, Yan LF, Hu YC, et al. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features[J]. Oncotarget. 2017;8(29):47816–30. https://doi.org/10.18632/oncotarget.18001.
Jütten K, Mainz V, Gauggel S, et al. Diffusion tensor imaging reveals microstructural heterogeneity of normal-appearing white matter and related cognitive dysfunction in glioma patients[J]. Front Oncol. 2019;9:536. https://doi.org/10.3389/fonc.2019.00536.eCollection.2019.
Chenevert TL, Malyarenko DI, Galbán CJ, et al. Comparison of voxel-wise and histogram analyses of glioma ADC maps for prediction of early therapeutic change[J]. Tomography. 2019;5(1):7–14. https://doi.org/10.18383/j.tom.2018.00049.
Skogen K, Schulz A, Dormagen JB, et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas[J]. Eur J Radiol. 2016;85(4):824–9. https://doi.org/10.1016/j.ejrad.2016.01.013.
Payabvash S, Tihan T, Cha S, et al. Volumetric voxelwise apparent diffusion coefficient histogram analysis for differentiation of the fourth ventricular tumors[J]. Neuroradiol J. 2018;31(6):554–64. https://doi.org/10.1177/1971400918800803(Epub 2018 Sep 19).
Lu SS, Kim SJ, Kim N, et al. Histogram analysis of apparent: diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions [J]. RJRAm J Roentgenol. 2015;204(4):827–34. https://doi.org/10.2214/AJR.14.12677.
Wang Q, Li H, Yan X, et al. Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer[J]. Urol Oncol. 2015;33(8):337.e15–24. https://doi.org/10.1016/j.urolonc.2015.05.005.
Xu XQ, Li Y, Hong XN, et al. Radiological indeterminate vestibular schwannoma and meningioma in cerebellopontine angle area: differentiating using whole-tumor histogram analysis of apparent diffusion coefficient[J]. Int J Neurosci. 2017;127(2):183–90. https://doi.org/10.3109/00207454.2016.1164157.