Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giải trình tự toàn bộ genome để đặc trưng hóa phân tử các chủng Klebsiella pneumoniae kháng carbapenem được phân lập tại Bệnh viện ASST Fatebenefratelli Sacco, Ý, 2012–2014
Tóm tắt
Sự xuất hiện của các chủng Klebsiella pneumoniae kháng carbapenem đang đe dọa điều trị kháng sinh. Một trăm sáu mươi tám chủng K. pneumoniae sản xuất carbapenemase được phân lập tại Bệnh viện Đại học Luigi Sacco-ASST Fatebenefratelli Sacco (Milan, Ý) từ năm 2012 đến 2014 đã được đặc trưng vi sinh học và phân tử. Chúng đã được thử nghiệm về độ nhạy cảm thuốc và các kiểu hình carbapenemase, được điều tra thông qua phản ứng chuỗi polymerase palindromic lặp lại (REP-PCR), và đã được giải trình tự hoàn chỉnh thông qua công nghệ giải trình tự thế hệ mới cho việc phân tích in silico về loại hình trình tự nhiều vùng (MLST), hệ kháng thuốc, virulome và nội dung plasmid của chúng, cũng như các kiểu gen polymorphism nucleotide đơn lẻ (SNP) lõi. Tất cả các mẫu đều kháng lại carbapenem, các β-lactam khác và ciprofloxacin; nhiều chủng kháng lại aminoglycosides và tigecycline; và bảy chủng kháng lại colistin. Phân tích hệ kháng thuốc cho thấy sự hiện diện của các gen blaKPC và, ít thường xuyên hơn là blaSHV, blaTEM, blaCTX-M và blaOXA, liên quan đến sự kháng carbapenem và các β-lactam khác. Các gen liên quan đến kháng aminoglycoside, fluoroquinolone, phenicol, sulfonamide, tetracycline, trimethoprim và macrolide-lincosamide-streptogramin cũng đã được phát hiện. Các gen liên quan đến các cơ chế kháng tigecycline phụ thuộc vào bơm efflux AcrAB-TolC và độc lập với bơm cũng đã được điều tra, nhưng không thể xác định rõ ràng mối tương quan giữa các đặc điểm gen với sự kháng tigecycline vì sự hiện diện của một đột biến chung trong các chủng nhạy cảm, trung gian và kháng. Về kháng colistin, gen mgrB đã bị phá hủy bởi một yếu tố giống IS5, và các gen di động mcr-1 và mcr-2 không được phát hiện trong hai trường hợp. Hồ sơ virulome cho thấy các gen fimbriae loại 3 và hệ thống hấp thu sắt, rất quan trọng trong giai đoạn thực dân trong môi trường vật chủ thú có vú. Các replicon plasmid được phát hiện in silico được phân loại là IncFIB(pQil), IncFIB(K), ColRNAI, IncX1, IncX3, IncFII(K), IncN, IncL/M(pMU407) và IncFIA(HI1). REP-PCR cho thấy năm cụm chính, và MLST phát hiện ra sáu kiểu trình tự khác nhau: 512, 258, 307, 1519, 745 và 101. Việc genotyping SNP lõi, đã tạo ra bốn cụm, tương quan với dữ liệu MLST. Các chủng cùng một kiểu trình tự thường có các đặc điểm di truyền chung, nhưng phân tích SNP cho phép theo dõi và phân biệt các chủng tốt hơn so với cả phân tích REP-PCR hay MLST. Những phát hiện của chúng tôi hỗ trợ tầm quan trọng của việc áp dụng gen học vi sinh vật trong y học lâm sàng nhằm bổ sung cho các phương pháp truyền thống và khắc phục những giới hạn của chúng.
Từ khóa
#Klebsiella pneumoniae #kháng carbapenem #giải trình tự toàn bộ genome #vi sinh học phân tử #kháng thuốcTài liệu tham khảo
Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis. 2013;56:1310–8.
Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A review of ten years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals. 2013;6:1335–46.
van Duijn PJ, Dautzenberg MJ, Oostdijk EA. Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care. 2011;17:658–65.
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682–7.
Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13:558–64.
Tijet N, Sheth PM, Lastovetska O, Chung C, Patel SN, Melano RG, et al. Molecular Characterization of Klebsiella pneumoniae Carbapenemase (KPC) - Producing Enterobacteriaceae in Ontario, Canada, 2008-2011. PLoS One. 2014;9:e116421.
Mathers AJ, Stoesser N, Chai W, Carroll J, Barry K, Cherunvanky A, et al. Chromosomal integration of the Klebsiella pneumoniae carbapenemase gene, blaKPC, in Klebsiella species is elusive but not rare. Antimicrob Agents Chemother. 2017;61:e01823–16.
Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents. 2011;37:415–9.
Weterings V, Zhou K, Rossen JW, van Stenis D, Thewessen E, Kluytmans J, Veenemans J. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis. 2015;34:1647–55.
Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S, Network EuSCAPE-Italy, Grundmann H, Pantosti A, Rossolini GM. Colistin resistance superimposed to endemic carbapenem- resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April. Euro Surveill. 2014;19 (42).
Palmore TN, Henderson DK. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin Infect Dis. 2013;57:1593–9.
Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, the AMCLI-CRE Survey Participants, Pantosti A, Pagani L, Luzzaro F, Rossolini GM. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill. 2013;18 (22).
Sabat AJ, Budimir A, Nashev D, et al. ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill. 2013;18:20380.
Köser CU, Ellington MJ, Peacock SJ. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014;30:401–7.
Lee Y, Kim BS, Chun J, Yong JH, Lee YS, Yoo JS, et al. Clonality and Resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing. Biomed Res Int. 2014;2014:352862.
Zhao F, Bai J, Wu J, Liu J, Zhou M, Xia S, et al. Sequencing and genetic variation of multidrug resistance plasmids in Klebsiella pneumoniae. PLoS One. 2010;5:e10141.
Ramirez MS, Traglia GM, Lin DL, Tran T, Tolmasky ME. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-Negatives: the Klebsiella pneumoniae Paradigm. Microbiol Spectr. 2014;2:1–15.
Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28:565–91.
EUCAST (European Committee on Antimicrobial Susceptibility Testing), 2012; Breakpoint tables for interpretation of MICs and zone diameters. Version 2.0, valid from 2012–01-01. http://www.eucast.org/clinical_breakpoints/
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011 (Version 1.33). https://github.com/najoshi/sickle
Simpson JT, Kim Wong K, Shaun D, Jackman SD, Jacqueline E, Schein JE, et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.
Francisco AP, Bugalho M, Ramirez M, Carrico JA. Global Optimal eBURST analysis of Multilocus typing data using a graphic matroid approach. BMC Bioinformatics. 2009;10:152.
Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13:87.
He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One. 2015;10:e0119064.
Fang L, Chen Q, Shi K, Li X, Shi Q, He F, et al. Step-wise increase in tigecycline resistance in Klebsiella pneumoniae associated with mutations in ramR, lon and rpsJ. PLoS One. 2016;11:e0165019.
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.
Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016;21(27).
Choi Y, Chan A. Provean web server: a tool to predict the functional effect of anninoacid sobstitution and indels. Bioinformatics. 2015;31:2745–7.
Darling AE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
Gardner SN, Hall BG. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS One. 2013;8:e81760.
Huson DH and Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks, Syst. Biol. 2012; 61: 1061–7. (Software freely available at http://dendroscope.org).
Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol. 2016;7:895.
Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.
Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29:1099–106.
Mammina C, Palma DM, Bonura C, Anna Plano MR, Monastero R, Sodano C, et al. Outbreak of infection with Klebsiella pneumoniae sequence type 258 producing Klebsiella pneumoniae Carbapenemase 3 in an intensive care unit in Italy. J Clin Microbiol. 2010;48:1506–7.
Giani T, Arena F, Vaggelli G, Conte V, Chiarelli A, Henrici De Angelis L, et al. Large nosocomial outbreak of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae traced to clonal expansion of an mgrB deletion mutant. J Clin Microbiol. 2015;53:3341–4.
Ridolfo AL, Rimoldi SG, Pagani C, Marino AF, Piol A, Rimoldi M, et al. Diffusion and transmission of carbapenems-resistant Klebsiella pneumoniae in the medical and surgical wards of a university hospital in Milan, Italy. J Infect Public Health. 2016;9:24–33.
Snitkin ES, Zelazny AM, Thomas PJ, Stock F; NISC Comparative Sequencing Program Group, Henderson DK, Palmore TN, Segre JA. Tracking a Hospital Outbreak of Carbapenem-Resistant Klebsiella pneumoniae with Whole-Genome Sequencing. Sci Transl Med. 2012;4:148ra116.
Onori R, Gaiarsa S, Comandatore F, Pongolini S, Brisse S, Colombo A, et al. Tracking nosocomial Klebsiella pneumoniae infections and outbreaks by whole genome analysis: small-scale Italian scenario within a single hospital. J Clin Microbiol. 2015;53:2861–8.
Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA. Mechanisms of bacterial pathogenicity. Postgrad Med J. 2002;78:216–24.
Ong C-LY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010;10:183.
Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis. 2014;20:1812–20.
Schaible UE, Kaufmann SHE. Iron and microbial infection. Nat Rev. 2004;2:946–53.
De Jesus MB, Ehlers MM, Dos Santos RF, Kock MM. Understanding β-lactamase producing Klebsiella pneumoniae. InTechOpen. 2015; doi:10.5772/61852.
Carattoli A, Zankari E, Garcia-Fernandez A, Volby Larsen M, Lund O, Villa L, et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother. 2014;58:3895–903.
Ramos PI, Picão RC, Almeida LG, Lima NC, Girardello R, Vivan AC, et al. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics. 2014;15:54.
Conte V, Monaco M, Giani T, D'Ancona F, Moro ML, Arena F, et al. AR-ISS Study Group on Carbapenemase-Producing K. pneumoniae. Molecular epidemiology of KPC-producing Klebsiella pneumoniae from invasive infections in Italy: increasing diversity with predominance of the ST512 clade II sublineage. J Antimicrob Chemother. 2016;71:3386–91.