Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids)
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahsan, 2018, Biosynthesis of the nylon 12 monomer, omega-aminododecanoic acid with novel CYP153A, AlkJ, and omega-TA enzymes, Biotechnol. J., 13, 10.1002/biot.201700562
Ameria, 2015, Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin, Biotechnol. Lett., 37, 1637, 10.1007/s10529-015-1824-2
Appel, 2001, A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes, J. Biotechnol., 88, 167, 10.1016/S0168-1656(01)00249-8
Bae, 2014, fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity, Appl. Microbiol. Biotechnol., 98, 8917, 10.1007/s00253-014-5974-2
Baneyx, 2004, Recombinant protein folding and misfolding in Escherichia coli, Nat. Biotechnol., 22, 1399, 10.1038/nbt1029
Barry, 2012, Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis, Nat. Chem. Biol., 8, 814, 10.1038/nchembio.1048
Bentley, 2002, Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 417, 141, 10.1038/417141a
Berry, 2002, Application of metabolic engineering to improve both the production and use of biotech indigo, J. Ind. Microbiol. Biotechnol., 28, 127, 10.1038/sj.jim.7000228
Biggs, 2016, Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 113, 3209, 10.1073/pnas.1515826113
Both, 2016, Whole-cell biocatalysts for stereoselective C-H amination reactions, Angew. Chem. Int. Ed. Eng., 55, 1511, 10.1002/anie.201510028
Budde, 2004, Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis, Appl. Microbiol. Biotechnol., 66, 180, 10.1007/s00253-004-1719-y
Cahn, 2017, A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases, ACS Synth. Biol., 6, 326, 10.1021/acssynbio.6b00188
Cao, 2017, Alpha, omega-dodecanedioic acid production by Candida viswanathii ipe-1 with co-utilization of wheat straw hydrolysates and n-dodecane, Bioresour. Technol., 243, 179, 10.1016/j.biortech.2017.06.082
Cao, 2018, Improving alpha, omega-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation, Bioresour. Technol., 260, 9, 10.1016/j.biortech.2018.03.070
Chanique, 2018, Protein engineering for nicotinamide coenzyme specificity in oxidoreductases: attempts and challenges, Front. Microbiol., 9, 194, 10.3389/fmicb.2018.00194
Chen, 2017, Multienzyme biosynthesis of dihydroartemisinic acid, Molecules, 22, 10.3390/molecules22091422
Choi, 2009, A-ring ortho-specific monohydroxylation of daidzein by cytochrome P450s of Nocardia farcinica IFM10152, Biotechnol. J., 4, 1586, 10.1002/biot.200900157
Choi, 2013, Development of colorimetric HTS assay of cytochrome p450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity, Chembiochem, 14, 1231, 10.1002/cbic.201300212
Choi, 2014, Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation, Appl. Microbiol. Biotechnol., 98, 8191, 10.1007/s00253-014-5706-7
Chu, 2016, Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities, Microb. Cell Factories, 15, 10.1186/s12934-016-0533-4
Clark, 2012, Green chemistry, biofuels, and biorefinery, Annu. Rev. Chem. Biomol. Eng., 3, 183, 10.1146/annurev-chembioeng-062011-081014
Coelho, 2013, Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes, Science, 339, 307, 10.1126/science.1231434
Cornelis, 2000, Expressing genes in different Escherichia coli compartments, Curr. Opin. Biotechnol., 11, 450, 10.1016/S0958-1669(00)00131-2
Del Carratore, 2011, Expression and characterization of two new alkane-inducible cytochrome P450s from Trichoderma harzianum, Biotechnol. Lett., 33, 1201, 10.1007/s10529-011-0557-0
Dietrich, 2008, Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis, Appl. Microbiol. Biotechnol., 79, 931, 10.1007/s00253-008-1500-8
Doukyu, 2002, Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole, Appl. Microbiol. Biotechnol., 58, 543, 10.1007/s00253-001-0919-y
Du, 2018, Metabolic engineering of Escherichia coli for the production of indirubin from glucose, J. Biotechnol., 267, 19, 10.1016/j.jbiotec.2017.12.026
Ducharme, 2018, Use of bioconjugation with cytochrome P450 enzymes, Biochim. Biophys. Acta, Proteins Proteomics, 1866, 32, 10.1016/j.bbapap.2017.06.007
Ehrhardt, 2016, Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol, J. Biotechnol., 218, 34, 10.1016/j.jbiotec.2015.11.021
Ensley, 1983, Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo, Science, 222, 167, 10.1126/science.6353574
Eschenfeldt, 2003, Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis, Appl. Environ. Microbiol., 69, 5992, 10.1128/AEM.69.10.5992-5999.2003
Estabrook, 1996, The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain, Arch. Biochem. Biophys., 333, 308, 10.1006/abbi.1996.0395
Eustaquio, 2016, Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp, Metab. Eng., 33, 67, 10.1016/j.ymben.2015.11.003
Fasan, 2007, Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties, Angew. Chem. Int. Ed. Eng., 46, 8414, 10.1002/anie.200702616
Frabel, 2018, Engineering of new-to-nature halogenated indigo precursors in plants, Metab. Eng., 46, 20, 10.1016/j.ymben.2018.02.003
Fujii, 2006, Production of alpha, omega-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4, Biosci. Biotechnol. Biochem., 70, 1379, 10.1271/bbb.50656
Fujii, 2011, Construction of a novel expression vector in Pseudonocardia autotrophica and its application to efficient biotransformation of compactin to pravastatin, a specific HMG-CoA reductase inhibitor, Biochem. Biophys. Res. Commun., 404, 511, 10.1016/j.bbrc.2010.12.013
Funk, 2017, Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis, J. Ind. Microbiol. Biotechnol., 44, 1491, 10.1007/s10295-017-1972-6
Furuya, 2010, Genome mining approach for the discovery of novel cytochrome P450 biocatalysts, Appl. Microbiol. Biotechnol., 86, 991, 10.1007/s00253-010-2450-5
Gatter, 2014, A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain omega-hydroxy fatty acids in Yarrowia lipolytica, FEMS Yeast Res., 14, 858, 10.1111/1567-1364.12176
Gillam, 1999, Formation of indigo by recombinant mammalian cytochrome P450, Biochem. Biophys. Res. Commun., 265, 469, 10.1006/bbrc.1999.1702
Gillam, 2000, Oxidation of indole by cytochrome P450 enzymes, Biochemistry, 39, 13817, 10.1021/bi001229u
Girvan, 2011, Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: implications for the mechanism of electron transfer in the P450 BM3 dimer, Arch. Biochem. Biophys., 507, 75, 10.1016/j.abb.2010.09.014
Grant, 2011, Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli, Enzym. Microb. Technol., 48, 480, 10.1016/j.enzmictec.2011.01.008
Grant, 2014, Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes, Sci. Rep., 28
Guengerich, 2015
Hammerer, 2018, Regioselective biocatalytic hydroxylation of fatty acids by cytochrome P450s, Catal. Lett., 148, 787, 10.1007/s10562-017-2273-4
Han, 2011, Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo), Process Biochem., 46, 788, 10.1016/j.procbio.2010.10.015
Han, 2012, Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation, J. Biotechnol., 164, 179, 10.1016/j.jbiotec.2012.08.015
Han, 2017, Designing and creating a synthetic omega oxidation pathway in Saccharomyces cerevisiae enables production of medium-chain alpha, omega-dicarboxylic acids, Front. Microbiol., 8, 2184, 10.3389/fmicb.2017.02184
Hsieh, 2018, Production of 1-Dodecanol, 1-Tetradecanol, and 1,12-Dodecanediol through whole-cell biotransformation in Escherichia coli, Appl. Environ. Microbiol., 84, 10.1128/AEM.01806-17
Huang, 2007, A shuffled CYP2C library with a high degree of structural integrity and functional versatility, Arch. Biochem. Biophys., 467, 193, 10.1016/j.abb.2007.08.023
Huang, 2007, Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency, J. Mol. Biol., 373, 633, 10.1016/j.jmb.2007.08.015
Huang, 2011, Control of the stereo-selectivity of styrene epoxidation by cytochrome P450 BM3 using structure-based mutagenesis, Metallomics, 3, 410, 10.1039/c0mt00082e
Huang, 2019, Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid, Appl. Microbiol. Biotechnol., 103, 7029, 10.1007/s00253-019-10004-z
Iwama, 2016, Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica, Fungal Genet. Biol., 91, 43, 10.1016/j.fgb.2016.03.007
Jensen, 2011, Light-driven cytochrome p450 hydroxylations, ACS Chem. Biol., 6, 533, 10.1021/cb100393j
Jin, 2019, Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering, Microb. Cell Factories, 18, 10.1186/s12934-019-1127-8
Jung, 2016, Production of omega-hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo, Appl. Microbiol. Biotechnol., 100, 10375, 10.1007/s00253-016-7675-5
Kadisch, 2017, Maximization of cell viability rather than biocatalyst activity improves whole-cell omega-oxyfunctionalization performance, Biotechnol. Bioeng., 114, 874, 10.1002/bit.26213
Kim, 2007, Functional expression and characterization of cytochrome P450 52A21 from Candida albicans, Arch. Biochem. Biophys., 464, 213, 10.1016/j.abb.2007.02.032
Kim, 2017, Biosynthesis of indigo in Escherichia coliexpressing self-sufficient CYP102A from Streptomyces cattleya, Dyes Pigments, 140, 29, 10.1016/j.dyepig.2017.01.029
Kim, 2018, In vitro characterization of CYP102G4 from Streptomyces cattleya: a self-sufficient P450 naturally producing indigo, Biochim. Biophys. Acta, Proteins Proteomics, 1866, 60, 10.1016/j.bbapap.2017.08.002
Kim, 2019, Elucidating cysteine-assisted synthesis of Indirubin by a flavin-containing monooxygenase, ACS Catal., 9, 9539, 10.1021/acscatal.9b02613
Koch, 2009, In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6, Appl. Environ. Microbiol., 75, 337, 10.1128/AEM.01758-08
Kotopka, 2019, Production of the cyanogenic glycoside dhurrin in yeast, Metab. Eng. Commun., 9, 10.1016/j.mec.2019.e00092
Kozono, 2017, Engineering of the cytochrome P450 monooxygenase system for benzyl maltol hydroxylation, Appl. Microbiol. Biotechnol., 101, 6651, 10.1007/s00253-017-8414-2
Ladkau, 2016, Efficient production of the nylon 12 monomer omega-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli, Metab. Eng., 36, 1, 10.1016/j.ymben.2016.02.011
Lee, 2011, Production of natural indirubin from indican using non-recombinant Escherichia coli, Bioresour. Technol., 102, 9193, 10.1016/j.biortech.2011.06.072
Lee, 2018, Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources, Biotechnol. Biofuels, 11, 10.1186/s13068-018-1310-x
Lee, 2019, Biotransformation of dicarboxylic acids from vegetable oil-derived sources: current methods and suggestions for improvement, Appl. Microbiol. Biotechnol., 103, 1545, 10.1007/s00253-018-9571-7
Lentz, 2004, Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis, J. Biotechnol., 108, 41, 10.1016/j.jbiotec.2003.11.001
Li, 2000, Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst, Chemistry, 6, 1531, 10.1002/(SICI)1521-3765(20000502)6:9<1531::AID-CHEM1531>3.3.CO;2-4
Li, 2005, Indole hydroxylation by bacterial cytochrome P450 BM-3 and modulation of activity by cumene hydroperoxide, Biosci. Biotechnol. Biochem., 69, 293, 10.1271/bbb.69.293
Li, 2008, Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst, Appl. Biochem. Biotechnol., 144, 27, 10.1007/s12010-007-8002-5
Li, 2019, Production of triterpene ginsenoside compound K in the non-conventional yeast yarrowia lipolytica, J. Agric. Food Chem., 67, 2581, 10.1021/acs.jafc.9b00009
Lin, 2014, Biotechnological production of plant-specific hydroxylated phenylpropanoids, Biotechnol. Bioeng., 111, 1895, 10.1002/bit.25237
Liu, 2018, Heterologous production of levopimaric acid in Saccharomyces cerevisiae, Microb. Cell Factories, 17, 10.1186/s12934-018-0964-1
Liu, 2019, Biosynthesis of long-chain omega-Hydroxy fatty acids by engineered Saccharomyces cerevisiae, J. Agric. Food Chem., 67, 4545, 10.1021/acs.jafc.9b00109
Lu, 2007, Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system, J. Ind. Microbiol. Biotechnol., 34, 247, 10.1007/s10295-006-0193-1
Lu, 2010, Biosynthesis of monomers for plastics from renewable oils, J. Am. Chem. Soc., 132, 15451, 10.1021/ja107707v
Luck, 2017, CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata, Plant Mol. Biol., 95, 169, 10.1007/s11103-017-0646-0
Lundemo, 2015, Guidelines for development and implementation of biocatalytic P450 processes, Appl. Microbiol. Biotechnol., 99, 2465, 10.1007/s00253-015-6403-x
Matthews, 2017, Production of alkenes and novel secondary products by P450 OleTJE using novel H2 O2 -generating fusion protein systems, FEBS Lett., 591, 737, 10.1002/1873-3468.12581
McLean, 2015, Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum, Proc. Natl. Acad. Sci. U. S. A., 112, 2847, 10.1073/pnas.1419028112
Mi, 2016, Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1, World J. Microbiol. Biotechnol., 32, 10.1007/s11274-016-2071-y
Mikkelsen, 2000, Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid, J. Biol. Chem., 275, 33712, 10.1074/jbc.M001667200
Miura, 1975, Omega-1, Omega-2 and Omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium, Biochim. Biophys. Acta, 388, 305, 10.1016/0005-2760(75)90089-2
Miura, 2015, The effect of 5-Aminolevulinic acid on cytochrome P450-mediated prodrug activation, PLoS One, 10, 10.1371/journal.pone.0131793
Mohan, 2018, Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine, Biomed. Pharmacother., 105, 506, 10.1016/j.biopha.2018.05.127
Munro, 2007, Cytochrome P450--redox partner fusion enzymes, Biochim. Biophys. Acta, 1770, 345, 10.1016/j.bbagen.2006.08.018
Neeli, 2005, Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes, J. Biol. Chem., 280, 17634, 10.1074/jbc.M413826200
Notonier, 2016, Semirational protein engineering of CYP153AM.Aq. -CPRBM3 for efficient terminal hydroxylation of short- to long-chain fatty acids, Chembiochem, 17, 1550, 10.1002/cbic.201600207
O’Connor, 1997, Indigo formation by microorganisms expressing styrene monooxygenase activity, Appl. Environ. Microbiol., 63, 4287, 10.1128/AEM.63.11.4287-4291.1997
Omura, 1962, A new cytochrome in liver microsomes, J. Biol. Chem., 237, 1375, 10.1016/S0021-9258(18)60338-2
Paddon, 2014, Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nat. Rev. Microbiol., 12, 355, 10.1038/nrmicro3240
Paddon, 2013, High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, 496, 528, 10.1038/nature12051
Pandey, 2011, Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids, Enzym. Microb. Technol., 48, 386, 10.1016/j.enzmictec.2011.01.001
Park, 2011, Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli, Appl. Microbiol. Biotechnol., 89, 1387, 10.1007/s00253-010-2994-4
Park, 2019, CYP52A23 from Candida albicans and its substrate preference for fatty acid hydroxylation, Arch. Biochem. Biophys., 671, 27, 10.1016/j.abb.2019.06.002
Pengpai, 2013, Improving the activity of cytochrome P450 BM-3 catalyzing indole hydroxylation by directed evolution, Appl. Biochem. Biotechnol., 171, 93, 10.1007/s12010-013-0353-5
Pham, 2013, Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling, Biotechnol. Bioeng., 110, 363, 10.1002/bit.24632
Picataggio, 1992, Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids, Biotechnology (N Y), 10, 894
Rajendra Prasad, 2011, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Mol. Cell. Biochem., 349, 11, 10.1007/s11010-010-0655-7
Rui, 2005, Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds, Appl. Microbiol. Biotechnol., 66, 422, 10.1007/s00253-004-1698-z
S, 2019, Ecofriendly one-pot biosynthesis of indigo derivative dyes using CYP102G4 and PrnA halogenase, Dyes Pigments, 162, 80, 10.1016/j.dyepig.2018.10.009
Sathesh-Prabu, 2015, Production of long-chain alpha,omega-dicarboxylic acids by engineered Escherichia coli from renewable fatty acids and plant oils, J. Agric. Food Chem., 63, 8199, 10.1021/acs.jafc.5b03833
Scheps, 2011, Regioselective omega-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666, Org. Biomol. Chem., 9, 6727, 10.1039/c1ob05565h
Scheps, 2013, Synthesis of omega-hydroxy dodecanoic acid based on an engineered CYP153A fusion construct, Microb. Biotechnol., 6, 694, 10.1111/1751-7915.12073
Schwaneberg, 2000, P450 in biotechnology: zinc driven omega-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst, J. Biotechnol., 84, 249, 10.1016/S0168-1656(00)00357-6
Seo, 2015, Adding value to plant oils and fatty acids: biological transformation of fatty acids into omega-hydroxycarboxylic, alpha,omega-dicarboxylic, and omega-aminocarboxylic acids, J. Biotechnol., 216, 158, 10.1016/j.jbiotec.2015.10.024
Shao, 2019, Indirubin regulates MPL and TNF expression in peripheral blood mononuclear cells from patients with primary immune thrombocytopenia, Exp. Hematol., 73, 18, 10.1016/j.exphem.2019.04.002
Smit, 2005, Alpha,omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica, Biotechnol. Lett., 27, 859, 10.1007/s10529-005-6719-1
Song, 2013, Multistep enzymatic synthesis of long-chain alpha,omega-dicarboxylic and omega-hydroxycarboxylic acids from renewable fatty acids and plant oils, Angew. Chem. Int. Ed. Eng., 52, 2534, 10.1002/anie.201209187
Sudheer, 2018, Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL, Enzym. Microb. Technol., 119, 45, 10.1016/j.enzmictec.2018.09.001
Sugiharto, 2018, Effect of decanoic acid and 10-hydroxydecanoic acid on the biotransformation of methyl decanoate to sebacic acid, AMB Express, 8, 10.1186/s13568-018-0605-4
Sun, 2017, Genome shuffling of Colletotrichum lini for improving 3beta,7alpha,15alpha-trihydroxy-5-androsten-17-one production from dehydroepiandrosterone, J. Ind. Microbiol. Biotechnol., 44, 937, 10.1007/s10295-017-1918-z
Sung, 2015, The production of omega-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli, Appl. Microbiol. Biotechnol., 99, 6667, 10.1007/s00253-015-6630-1
Takai, 2012, Construction and characterization of a Yarrowia lipolytica mutant lacking genes encoding cytochromes P450 subfamily 52, Fungal Genet. Biol., 49, 58, 10.1016/j.fgb.2011.11.003
Tavanti, 2017, A biocatalytic cascade for the amination of unfunctionalised cycloalkanes, Org. Biomol. Chem., 15, 9790, 10.1039/C7OB02569F
Urlacher, 2019, Cytochrome P450 monooxygenases in biotechnology and synthetic biology, Trends Biotechnol., 37, 882, 10.1016/j.tibtech.2019.01.001
Valikhani, 2018, A tailor-made, self-sufficient and recyclable monooxygenase catalyst based on coimmobilized cytochrome P450 BM3 and glucose dehydrogenase, Biotechnol. Bioeng., 115, 2416, 10.1002/bit.26802
van Vugt-Lussenburg, 2007, Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis, J. Med. Chem., 50, 455, 10.1021/jm0609061
Venkataraman, 2015, Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme, Appl. Microbiol. Biotechnol., 99, 4713, 10.1007/s00253-014-6281-7
Vidavalur, 2006, Significance of wine and resveratrol in cardiovascular disease: French paradox revisited, Exp. Clin. Cardiol., 11, 217
Wang, 2016, Improving 3’-Hydroxygenistein production in recombinant Pichia pastoris using periodic hydrogen peroxide-shocking strategy, J. Microbiol. Biotechnol., 26, 498, 10.4014/jmb.1509.09013
Wang, 2018, Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids, J. Ind. Microbiol. Biotechnol., 45, 971, 10.1007/s10295-018-2074-9
Wang, 2018, Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum, Biotechnol. Bioeng., 115, 1842, 10.1002/bit.26583
Wang, 2019, Efficient production of glycyrrhetinic acid in metabolically engineered Saccharomyces cerevisiae via an integrated strategy, Microb. Cell Factories, 18, 10.1186/s12934-019-1138-5
Wang, 2019, Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency, Cell Discov., 5, 5, 10.1038/s41421-018-0075-5
Wang, 2019, Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review, Crit. Rev. Biotechnol., 39, 633, 10.1080/07388551.2019.1577214
Warzecha, 2007, Formation of the indigo precursor indican in genetically engineered tobacco plants and cell cultures, Plant Biotechnol. J., 5, 185, 10.1111/j.1467-7652.2006.00231.x
Wei, 2018, Recent developments in the application of P450 based biocatalysts, Curr. Opin. Chem. Biol., 43, 1, 10.1016/j.cbpa.2017.08.006
Whitehouse, 2012, P450(BM3) (CYP102A1): connecting the dots, Chem. Soc. Rev., 41, 1218, 10.1039/C1CS15192D
Wongsaroj, 2015, Cloning of toluene 4-monooxygenase genes and application of two-phase system to the production of the anticancer agent, Indirubin, Mol. Biotechnol., 57, 720, 10.1007/s12033-015-9863-4
Wu, 2005, Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis, J. Biol. Chem., 280, 41090, 10.1074/jbc.M508182200
Yi, 2018, Production of pikromycin using branched chain amino acid catabolism in Streptomyces venezuelae ATCC 15439, J. Ind. Microbiol. Biotechnol., 45, 293, 10.1007/s10295-018-2024-6
Yoshioka, 2006, Enzymatic properties of human CYP2W1 expressed in Escherichia coli, Biochem. Biophys. Res. Commun., 345, 169, 10.1016/j.bbrc.2006.04.080
Yue, 2015, Tandem expression in E. coli of type III PKS and P450 genes from marine Streptomyces olivaceus FXJ 7.023 gives production of phenol and indole, World J. Microbiol. Biotechnol., 31, 541, 10.1007/s11274-015-1825-2
Zelante, 2013, Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22, Immunity, 39, 372, 10.1016/j.immuni.2013.08.003
Zhang, 2009, Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries, J. Biotechnol., 139, 12, 10.1016/j.jbiotec.2008.09.010
Zhang, 2014, Production of indirubin from tryptophan by recombinant Escherichia coli containing naphthalene dioxygenase genes from Comamonas sp. MQ, Appl. Biochem. Biotechnol., 172, 3194, 10.1007/s12010-014-0743-3
Zhang, 2015, Determination of the cytosolic NADPH/NADP ratio in saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction, Sci. Rep., 5
Zhao, 2016, Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae, Biotechnol. Bioeng., 113, 1787, 10.1002/bit.25934
Zuo, 2019, Direct aromatic nitration system for synthesis of Nitrotryptophans in Escherichia coli, ACS Synth. Biol., 8, 857, 10.1021/acssynbio.8b00534