Ai sẽ được hưởng lợi từ thuốc chống trầm cảm trong điều trị cấp tính trầm cảm lưỡng cực? Phân tích lại nghiên cứu STEP-BD của Sachs và cộng sự năm 2007, sử dụng Q-learning

Fan Wu1, Eric B. Laber1, Ilya Lipkovich2, Emanuel Severus3
1Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, 27695, USA
2Quintiles, 4820 Emperor Blvd, Durham, 27703, USA
3Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany

Tóm tắt

Tóm tắt Thông tin nền Có nhiều sự không chắc chắn về hiệu quả của thuốc chống trầm cảm trong điều trị rối loạn lưỡng cực. Phương pháp Các thử nghiệm ngẫu nhiên có đối chứng truyền thống và các phương pháp thống kê không được thiết kế để phát hiện xem, khi nào và đối với ai can thiệp nên được áp dụng; do đó, cần có những phương pháp tiếp cận khác cho phép thực hành y học dựa trên bằng chứng và cá nhân hóa cho bệnh nhân bị trầm cảm lưỡng cực. Kết quả Các chế độ điều trị động hoạt động hóa quá trình ra quyết định lâm sàng như một chuỗi các quy tắc quyết định, mỗi quy tắc dành cho một giai đoạn can thiệp lâm sàng, ánh xạ thông tin bệnh nhân đến một liệu trình điều trị được khuyến nghị. Sử dụng dữ liệu từ con đường chăm sóc trầm cảm cấp tính (RAD) của Chương trình Tăng cường Điều trị Hệ thống cho Rối loạn Lưỡng cực (STEP-BD), chúng tôi ước tính một chế độ điều trị động tối ưu thông qua Q-learning. Kết luận Chế độ điều trị tối ưu ước tính đưa ra một số bằng chứng rằng bệnh nhân trong đường lối RAD của STEP-BD trải qua một cơn (hạ) hưng cảm trước cơn trầm cảm có thể sẽ tốt hơn nếu không thêm thuốc chống trầm cảm vào một thuốc ổn định tâm trạng bắt buộc.

Từ khóa


Tài liệu tham khảo

Bauer, M, Pfennig A, Severus E, Whybrow PC, Angst J, Möller H-J. World federation of societies of biological psychiatry (wfsbp) guidelines for biological treatment of unipolar depressive disorders, part 1: update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J Biol Psychiatry. 2013; 14(5):334–85.

Bellman, RE. Dynamic programming. Princeton, NY: Princeton University Press; 1957.

Chakraborty, B, Murphy SA. Dynamic treatment regimes. Annu Rev Stat Appl. 2014; 1:447–64.

Chakraborty, B, Laber EB, Zhao Y. Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme. Biometrics. 2013; 69(3):714–23.

Chakraborty, B, Moodie EE. Statistical reinforcement learning. In: Statistical methods for dynamic treatment regimes. New York: Springer: 2013. p. 31–52.

Goldberg, Y, Kosorok MR. Q-learning with censored data. Ann Stat. 2012; 40(1):529.

Grunze, H, Vieta E, Goodwin GM, Bowden C, Licht RW, Möller H-J, et al.The World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the biological treatment of bipolar disorders: update 2010 on the treatment of acute bipolar depression. World J Biol Psychiatry. 2010; 11(2):81–109.

Kleine-Budde, K, Touil E, Moock J, Bramesfeld A, Kawohl W, Rössler W. Cost of illness for bipolar disorder: a systematic review of the economic burden. Bipolar Disord. 2014; 16(4):337–353.

Laber, EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA. Dynamic treatment regimes: Technical challenges and applications. Electron J Stat. 2014; 8(1):1225–72.

Laber, EB, Lizotte DJ, Ferguson B. Set-valued dynamic treatment regimes for competing outcomes. Biometrics. 2014; 70(1):53–61.

Laber, EB, Murphy SA. Adaptive confidence intervals for the test error in classification. J Am Stat Assoc. 2011; 106(495):940–5.

Lavori, PW, Dawson R. Dynamic treatment regimes: practical design considerations. Clin Trials. 2004; 1(1):9–20.

Leboyer, M, Kupfer DJ. Bipolar disorder: new perspectives in health care and prevention. J Clin Psychiatry. 2010; 71(12):1689–95.

Lei, H, Nahum-Shani I, Lynch K, Oslin D, Murphy S. A “smart” design for building individualized treatment sequences. Annu Rev Clin Psychol. 2012; 8:21–48.

Licht, R, Gijsman H, Nolen W, Angst J. Are antidepressants safe in the treatment of bipolar depression? A critical evaluation of their potential risk to induce switch into mania or cycle acceleration. Acta Psychiatr Scand. 2008; 118(5):337–46.

Little, RJA, Rubin DB. Statistical analysis with missing data (second Edition): Chichester: Wiley; 2002.

McElroy, SL, Weisler RH, Chang W, Olausson B, Paulsson B, Brecher M, et al.A double-blind, placebo-controlled study of quetiapine and paroxetine as monotherapy in adults with bipolar depression (embolden ii). J Clin Psychiatry. 2010; 71(2):163–74.

Moodie, EE, Dean N, Sun YR. Q-learning: flexible learning about useful utilities. Stat Biosci. 2014; 6(2):223–243.

Moodie, EE, Richardson TS, Stephens DA. Demystifying optimal dynamic treatment regimes. Biometrics. 2007; 63(2):447–55.

Murphy, SA. Optimal dynamic treatment regimes (with discussion). J R Stat Soc. 2003; 65(2):331–66.

Murphy, SA. An experimental design for the development of adaptive treatment strategies. Stat Med. 2005; 24(10):1455–81.

Murphy, SA. A generalization error for Q-learning. J Mach Learn Res: JMLR. 2005; 6:1073.

Nahum-Shani, I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano GA, et al.Experimental design and primary data analysis methods for comparing adaptive interventions. Psychol Methods. 2012; 17(4):457.

Nahum-Shani, I, Qian M, Almirall D, Pelham WE, Gnagy B, Fabiano GA, et al.Q-learning: a data analysis method for constructing adaptive interventions. Psychol Methods. 2012; 17(4):478–94.

Nierenberg, AA, Friedman ES, Bowden CL, Sylvia LG, Thase ME, Ketter T, et al.Lithium treatment moderate-dose use study (LiTMUS) for bipolar disorder: a randomized comparative effectiveness trial of optimized personalized treatment with and without lithium. Am J Psychiatry. 2013; 170(1):102–10.

Pacchiarotti, I, Bond DJ, Baldessarini RJ, Nolen WA, Grunze H, Licht RW, et al.The International Society for Bipolar Disorders (ISBD) task force report on antidepressant use in bipolar disorders. Am J Psychiatry. 2013; 170(11):1249–62.

Phillips, ML, Kupfer DJ. Bipolar disorder diagnosis: challenges and future directions. The Lancet. 2013; 381(9878):1663–71.

Raghunathan, TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv Methodol. 2001; 27(1):85–96.

Robins, JM. Optimal structural nested models for optimal sequential decisions. In: Proceedings of the second seattle symposium in biostatistics. New York: Springer: 2004. p. 189–326.

Rubin, DB. Multiple imputation for nonresponse in surveys (Vol. 81): John Wiley & Sons; 2004.

Sachs, GS, Thase ME, Otto MW, Bauer M, Miklowitz D, Wisniewski SR, et al.Rationale, design, and methods of the systematic treatment enhancement program for bipolar disorder (step-bd). Biol Psychiatry. 2003; 53(11):1028–42.

Sachs, GS, Nierenberg AA, Calabrese JR, Marangell LB, Wisniewski SR, Gyulai L, et al.Effectiveness of adjunctive antidepressant treatment for bipolar depression. N Engl J Med. 2007; 356(17):1711–1722.

Sachs, GS, Guille C, McMurrich SL. A clinical monitoring form for mood disorders. Bipolar Disord. 2002; 4(5):323–7.

Schwarz, G. Estimating the dimension of a model. Ann Stat. 1978; 6:461–4.

Schulte, PJ, Tsiatis AA, Laber EB, Davidian M. Q-and A-learning methods for estimating optimal dynamic treatment regimes. Stat Sci: Rev J Inst Math Stat. 2014; 29(4):640–661.

Severus, E, Seemüller F, Berger M, Dittmann S, Obermeier M, Pfennig A, et al.Mirroring everyday clinical practice in clinical trial design: a new concept to improve the external validity of randomized double-blind placebo-controlled trials in the pharmacological treatment of major depression. BMC Medicine. 2012; 10(1):67.

Shortreed, SM, Laber E, Lizotte DJ, Stroup TS, Pineau J, Murphy SA. Informing sequential clinical decision-making through reinforcement learning: an empirical study. Mach Learn. 2011; 84(1-2):109–36.

Sterne, JA, May M, Costagliola D, De Wolf F, Phillips AN, Harris R, et al.Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. The Lancet. 2009; 373(9672):1352–63.

Strecher, VJ, Shiffman S, West R. Moderators and mediators of a web-based computer-tailored smoking cessation program among nicotine patch users. Nicotine Tobacco Res. 2006; 8(S. 1):95.

Sutton, RS, Barto AG. Reinforcement learning: an introduction: MIT press; 1998.

Tedeschini, E, Levkovitz Y, Iovieno N, Ameral VE, Nelson JC, Papakostas GI. Efficacy of antidepressants for late-life depression: a meta-analysis and meta-regression of placebo-controlled randomized trials. J Clin Psychiatry. 2011; 72(12):1660–8.

Van Buuren, S, Brand JP, Groothuis-Oudshoorn C, Rubin DB. Fully conditional specification in multivariate imputation. J Stat Comput Simul. 2006; 76(12):1049–64.

Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007; 16(3):219–42.

Van Buuren, S. Flexible imputation of missing data: CRC press; 2012.

Vos, T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al.Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2013; 380(9859):2163–96.

Watkins, CJ, Dayan P. Q-learning. Mach Learn. 1992; 8(3-4):279–92.

Wagner, EH, Austin BT, Davis C, Hindmarsh M, Schaefer J, Bonomi A. Improving chronic illness care: translating evidence into action. Health Aff. 2001; 20(6):64–78.

Zhang, B, Tsiatis AA, Laber EB, Davidian M. Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. Biometrika. 2013; 100(3):681–94.