White matter hyperintensities, cognitive impairment and dementia: an update

Nature Reviews Neurology - Tập 11 Số 3 - Trang 157-165 - 2015
Niels D. Prins1, Philip Scheltens1
1Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Longstreth, W. T. Jr et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke 27, 1274–1282 (1996).

van Dijk, E. J., Prins, N. D., Vermeer, S. E., Koudstaal, P. J. & Breteler, M. M. Frequency of white matter lesions and silent lacunar infarcts. J Neural Transm. Suppl. 62, 25–39 (2002).

de Leeuw, F. E., de Groot, J. C. & van Gijn, J. Cerebral white matter lesions in the elderly: vascular risk factors and cognitive consequences [Dutch]. Ned. Tijdschr. Geneeskd. 145, 2067–2071 (2001).

Pantoni, L. & Garcia, J. H. Pathogenesis of leukoaraiosis: a review. Stroke 28, 652–659 (1997).

Brickman, A. M. et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer's disease incidence. Neurobiol. Aging 36, 27–32 (2015).

Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666 (2010).

Prins, N. D. et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 128, 2034–2041 (2005).

Vermeer, S. E. et al. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).

Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

Pantoni, L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9, 689–701 (2010).

Chui, H. C. Subcortical ischemic vascular dementia. Neurol. Clin. 25, 717–740 (2007).

Lorius, N. et al. Vascular disease and risk factors are associated with cognitive decline in the Alzheimer disease spectrum. Alzheimer Dis. Assoc. Disord. http://dx.doi.org/10.1097/WAD.0000000000000043 .

O'Brien, J. T. & Markus, H. S. Vascular risk factors and Alzheimer's disease. BMC Med. 12, 218 (2014).

Kalaria, R. N. & Ihara, M. Dementia: vascular and neurodegenerative pathways—will they meet? Nat. Rev. Neurol. 9, 487–488 (2013).

Akinyemi, R. O., Mukaetova-Ladinska, E. B., Attems, J., Ihara, M. & Kalaria, R. N. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia. Curr. Alzheimer Res. 10, 642–653 (2013).

Biesbroek, J. M. et al. Association between subcortical vascular lesion location and cognition: a voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study. PLoS ONE 8, e60541 (2013).

Yoshita, M. et al. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 67, 2192–2198 (2006).

Swartz, R. H., Sahlas, D. J. & Black, S. E. Strategic involvement of cholinergic pathways and executive dysfunction: does location of white matter signal hyperintensities matter? J. Stroke Cerebrovasc. Dis. 12, 29–36 (2003).

Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I. & Zimmerman, R. A. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am. J. Roentgenol. 149, 351–356 (1987).

Scheltens, P. et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J. Neurol. Sci. 114, 7–12 (1993).

Gouw, A. A. et al. Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J. Neurol. 253, 1189–1196 (2006).

Maillard, P. et al. An automated procedure for the assessment of white matter hyperintensities by multispectral (T1, T2, PD) MRI and an evaluation of its between-centre reproducibility based on two large community databases. Neuroradiology 50, 31–42 (2008).

Maldjian, J. A. et al. Automated white matter total lesion volume segmentation in diabetes. AJNR Am. J. Neuroradiol. 34, 2265–2270 (2013).

Zhang, Y. et al. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements. PLoS ONE 8, e66367 (2013).

Lockhart, S. N. et al. Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front. Hum. Neurosci. 6, 56 (2012).

Verhaaren, B. F. et al. High blood pressure and cerebral white matter lesion progression in the general population. Hypertension 61, 1354–1359 (2013).

Schmidt, R. et al. White matter lesion progression in LADIS: frequency, clinical effects, and sample size calculations. Stroke 43, 2643–2647 (2012).

van Dijk, E. J. et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke 39, 2712–2719 (2008).

Pantoni, L. & Simoni, M. Pathophysiology of cerebral small vessels in vascular cognitive impairment. Int. Psychogeriatr. 15 (Suppl. 1), 59–65 (2003).

Román, G. C., Erkinjuntti, T., Wallin, A., Pantoni, L. & Chui, H. C. Subcortical ischaemic vascular dementia. Lancet Neurol. 1, 426–436 (2002).

De Groot, J. C. et al. Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann. Neurol. 52, 335–341 (2002).

Garde, E., Lykke Mortensen, E., Rostrup, E. & Paulson, O. B. Decline in intelligence is associated with progression in white matter hyperintensity volume. J. Neurol. Neurosurg. Psychiatry 76, 1289–1291 (2005).

Swan, G. E. et al. Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology 54, 2108–2114 (2000).

Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).

Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Lancet 357, 169–175 (2001).

Hachinski, V. C., Potter, P. & Merskey, H. Leuko-araiosis. Arch. Neurol. 44, 21–23 (1987).

Wahlund, L. O. et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32, 1318–1322 (2001).

Fazekas, G. et al. Brain MRI findings and cognitive impairment in patients undergoing chronic hemodialysis treatment. J. Neurol. Sci. 134, 83–38 (1995).

Kapeller, P. et al. Visual rating of age-related white matter changes on magnetic resonance imaging: scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 34, 441–445 (2003).

Prins, N. D. et al. Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics. Neurology 62, 1533–1539 (2004).

Wu, M. et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res. 148, 133–142 (2006).

Gouw, A. A. et al. Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc. Dis. 25, 247–253 (2008).

Schwarz, C., Fletcher, E., DeCarli, C. & Carmichael, O. Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Inf. Process. Med. Imaging 21, 239–251 (2009).

Maillard, P. et al. FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR Am. J. Neuroradiol. 34, 54–61 (2013).

Papma, J. M. et al. Cerebral small vessel disease affects white matter microstructure in mild cognitive impairment. Hum. Brain Mapp. 35, 2836–2851 (2014).

Yates, P. A. et al. Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front. Neurol. 4, 205 (2014).

Lee, S. H. et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS ONE 6, e25930 (2011).

Yates, P. A. et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82, 1266–1273 (2014).

Smith, E. E., Schneider, J. A., Wardlaw, J. M. & Greenberg, S. M. Cerebral microinfarcts: the invisible lesions. Lancet Neurol. 11, 272–282 (2012).

Koennecke, H. C. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 66, 165–171 (2006).

Simoni, M. et al. Age- and sex-specific rates of leukoaraiosis in TIA and stroke patients: population-based study. Neurology 79, 1215–1222 (2012).

Ylikoski, A. et al. White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26, 1171–1177 (1995).

Schmidt, R. et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 53, 687–692 (2004).

de Leeuw, F. E. et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 70, 9–14 (2001).

Barber, R. et al. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. J. Neurol. Neurosurg. Psychiatry 67, 66–72 (1999).

Lee, S. J. et al. The leukoaraiosis is more prevalent in the large artery atherosclerosis stroke subtype among Korean patients with ischemic stroke. BMC Neurol. 8, 31 (2008).

Pantoni, L. et al. Impact of age-related cerebral white matter changes on the transition to disability—the LADIS study: rationale, design and methodology. Neuroepidemiology 24, 51–62 (2005).

Schmidt, R. et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann. Neurol. 58, 610–616 (2005).

Pantoni, L. & Garcia, J. H. The significance of cerebral white matter abnormalities 100 years after Binswanger's report. A review. Stroke 26, 1293–1301 (1995).

Gouw, A. A. et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82, 126–135 (2011).

de Leeuw, F. E. et al. Aortic atherosclerosis at middle age predicts cerebral white matter lesions in the elderly. Stroke 31, 425–429 (2000).

de Leeuw, F. E. et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125, 765–772 (2002).

Goldstein, I. B., Bartzokis, G., Guthrie, D. & Shapiro, D. Ambulatory blood pressure and the brain: a 5-year follow-up. Neurology 64, 1846–1852 (2005).

Gottesman, R. F. et al. Blood pressure and white-matter disease progression in a biethnic cohort: Atherosclerosis Risk in Communities (ARIC) study. Stroke 41, 3–8 (2010).

Brundel, M., Kappelle, L. J. & Biessels, G. J. Brain imaging in type 2 diabetes. Eur. Neuropsychopharmacol. 24, 1967–1981 (2014).

Tiehuis, A. M. et al. Metabolic syndrome, prediabetes, and brain abnormalities on MRI in patients with manifest arterial disease: the SMART-MR study. Diabetes Care 37, 2515–2521 (2014).

Exalto, L. G., van der Flier, W. M., Scheltens, P., Vrenken, H. & Biessels, G. J. Dysglycemia, brain volume and vascular lesions on MRI in a memory clinic population. J. Diabetes Complications 28, 85–90 (2014).

Knopman, D. S. et al. Vascular risk factors and longitudinal changes on brain MRI: the ARIC study. Neurology 76, 1879–1885 (2011).

van Dijk, E. J. et al. Plasma amyloid β, apolipoprotein E, lacunar infarcts, and white matter lesions. Ann. Neurol. 55, 570–575 (2004).

Vinters, H. V., Secor, D. L., Pardridge, W. M. & Gray, F. Immunohistochemical study of cerebral amyloid angiopathy. III. Widespread Alzheimer A4 peptide in cerebral microvessel walls colocalizes with gamma trace in patients with leukoencephalopathy. Ann. Neurol. 28, 34–42 (1990).

Moody, D. M., Brown, W. R., Challa, V. R. & Anderson, R. L. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 194, 469–476 (1995).

Englund, E. Neuropathology of white matter changes in Alzheimer's disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 9 (Suppl. 1), 6–12 (1998).

Richardson, K. et al. The neuropathology of vascular disease in the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). Curr. Alzheimer Res. 9, 687–696 (2012).

Nicoll, J. A. et al. Association between APOE genotype, neuropathology and dementia in the older population of England and Wales. Neuropathol. Appl. Neurobiol. 37, 285–294 (2011).

Noh, Y. et al. White matter hyperintensities are associated with amyloid burden in APOE4 non-carriers. J. Alzheimers Dis. 40, 877–886 (2014).

Chao, L. L. et al. Associations between white matter hyperintensities and β amyloid on integrity of projection, association, and limbic fiber tracts measured with diffusion tensor MRI. PLoS ONE 8, e65175 (2013).

Kim, H. J. et al. The effects of small vessel disease and amyloid burden on neuropsychiatric symptoms: a study among patients with subcortical vascular cognitive impairments. Neurobiol. Aging 34, 1913–1920 (2013).

Barnes, J. et al. Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls. Neurobiol. Aging 34, 1996–2002 (2013).

Guzman, V. A. et al. White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment. Alzheimers Dement. 9 (5 Suppl.), S124–S131 (2013).

Chabriat, H. et al. Patterns of MRI lesions in CADASIL. Neurology 51, 452–457 (1998).

Tikka, S. et al. CADASIL and CARASIL. Brain Pathol. 24, 525–544 (2014).

Bianchi, S. et al. Two novel HTRA1 mutations in a European CARASIL patient. Neurology 82, 898–900 (2014).

Bersano, A. et al. The genetics of small-vessel disease. Curr. Med. Chem. 19, 4124–4141 (2012).

Fornage, M. et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann. Neurol. 69, 928–939 (2011).

Adib-Samii, P. et al. 17q25 locus is associated with white matter hyperintensity volume in ischemic stroke, but not with lacunar stroke status. Stroke 44, 1609–1615 (2013).

Tabara, Y. et al. Association of Chr17q25 with cerebral white matter hyperintensities and cognitive impairment: the J-SHIPP study. Eur. J. Neurol. 20, 860–862 (2013).

Viswanathan, A. & Greenberg, S. M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70, 871–880 (2011).

Vinters, H. V. et al. Secondary microvascular degeneration in amyloid angiopathy of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D). Acta Neuropathol. 95, 235–244 (1998).

McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

van der Knaap, M. S., Breiter, S. N., Naidu, S., Hart, A. A. & Valk, J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 213, 121–133 (1999).

Yoshida, T. et al. MELAS and reversible vasoconstriction of the major cerebral arteries. Intern. Med. 52, 1389–1392 (2013).

de Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann. Neurol. 47, 145–151 (2000).

Kramer, J. H., Reed, B. R., Mungas, D., Weiner, M. W. & Chui, H. C. Executive dysfunction in subcortical ischaemic vascular disease. J. Neurol. Neurosurg. Psychiatry 72, 217–220 (2002).

Mungas, D. et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease. Neurology 57, 2229–2235 (2001).

Carmichael, O. et al. Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Arch. Neurol. 67, 1370–1378 (2010).

Longstreth, W. T., Diehr, P. H., Yee, L. M., Newman, A. B. & Beauchamp, N. J. Brain imaging findings in elderly adults and years of life, healthy life, and able life over the ensuing 16 years: the Cardiovascular Health Study. J. Am. Geriatr. Soc. 62, 1838–1843 (2014).

LADIS Study Group. 2001–2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc. Dis. 32, 577–588 (2011).

Prins, N. D. et al. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 61, 1531–1534 (2004).

Román, G. C. & Kalaria, R. N. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol. Aging 27, 1769–1785 (2006).

Kimura, S. et al. Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153, 167–178 (2000).

Strachan, M. W., Reynolds, R. M., Marioni, R. E. & Price, J. F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat. Rev. Endocrinol. 7, 108–114 (2011).

Sachdev, P. S. et al. Homocysteine as a risk factor for cognitive impairment in stroke patients. Dement. Geriatr. Cogn. Disord. 15, 155–162 (2003).

Breteler, M. M. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol. Aging 21, 153–160 (2000).

Kalaria, R. N. Small vessel disease and Alzheimer's dementia: pathological considerations. Cerebrovasc. Dis. 13 (Suppl. 2), 48–52 (2002).

Hainsworth, A. H., Brittain, J. F. & Khatun, H. Pre-clinical models of human cerebral small vessel disease: utility for clinical application. J. Neurol. Sci. 322, 237–240 (2012).

Bink, D. I., Ritz, K., Aronica, E., van der Weerd, L. & Daemen, M. J. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J. Cereb. Blood Flow Metab. 33, 1666–1684 (2013).

van der Flier, W. M. et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J. Neurol. Neurosurg. Psychiatry 76, 1497–1500 (2005).

Jang, J. W. et al. Effect of white matter hyperintensity on medial temporal lobe atrophy in Alzheimer's disease. Eur. Neurol. 69, 229–235 (2013).

Erkinjuntti, T. et al. Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 50, 37–42 (1987).

Price, C. C., Jefferson, A. L., Merino, J. G., Heilman, K. M. & Libon, D. J. Subcortical vascular dementia: integrating neuropsychological and neuroradiologic data. Neurology 65, 376–382 (2005).

DeCarli, C. et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45, 2077–2084 (1995).

Brickman, A. M. et al. White matter hyperintensities and cognition: testing the reserve hypothesis. Neurobiol. Aging 32, 1588–1598 (2011).

Murray, A. D. et al. The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. Brain 134, 3687–3696 (2011).

Skoog, I., Kalaria, R. N. & Breteler, M. M. Vascular factors and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 13 (Suppl. 3), S106–S114 (1999).

Forette, F. et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352, 1347–1351 (1998).

Williamson, J. D. et al. Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern. Med. 174, 324–333 (2014).

ten Dam, V. H. et al. Effect of pravastatin on cerebral infarcts and white matter lesions. Neurology 64, 1807–1809 (2005).

Richard, E., Gouw, A. A., Scheltens, P. & van Gool, W. A. Vascular care in patients with Alzheimer disease with cerebrovascular lesions slows progression of white matter lesions on MRI: the evaluation of vascular care in Alzheimer's disease (EVA) study. Stroke 41, 554–556 (2010).

Richard, E., Kuiper, R., Dijkgraaf, M. G., Van Gool, W. A. & Evaluation of Vascular care in Alzheimer's disease. Vascular care in patients with Alzheimer's disease with cerebrovascular lesions—a randomized clinical trial. J. Am. Geriatr. Soc. 57, 797–805 (2009).

Richard, E. et al. Prevention of dementia by intensive vascular care (PreDIVA): a cluster-randomized trial in progress. Alzheimer Dis. Assoc. Disord. 23, 198–204 (2009).

Cyarto, E. V. et al. Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: the AIBL Active trial. BMC Psychiatry 12, 167 (2012).

Román, G. C. et al. Donepezil in vascular dementia: combined analysis of two large-scale clinical trials. Dement. Geriatr. Cogn. Disord. 20, 338–344 (2005).

Wilkinson, D. et al. The long-term efficacy and tolerability of donepezil in patients with vascular dementia. Int. J. Geriatr. Psychiatry 25, 305–313 (2010).

Erkinjuntti, T. et al. Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet 359, 1283–1290 (2002).

Orgogozo, J. M., Rigaud, A. S., Stöffler, A., Möbius, H. J. & Forette, F. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke 33, 1834–1839 (2002).

Inzitari, D. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339, b2477 (2009).

de Leeuw, F. E., Barkhof, F. & Scheltens, P. Progression of cerebral white matter lesions in Alzheimer's disease: a new window for therapy? J. Neurol. Neurosurg. Psychiatry 76, 1286–1288 (2005).