Which parameters influence the quantitative determination of halogenated substances? A summary of systematic investigations

Thomas Mayer1, Helko Borsdorf1
1UFZ-Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Leipzig, Germany

Tóm tắt

In recent years, we have intensively studied the ion chemistry of halogenated substances in ion mobility spectrometry (IMS). During atmospheric pressure chemical ionization (APCI) processes, dissociative electron transfer reactions between reactant ions and halogenated molecules occur and (H2O)nX− product ions are formed, which appear as distinct product ion peak in negative ion mobility spectra. These product ion peaks (obtained for different compounds) were used for comparing differences in detectability, sensitivity, peak position and resolution. We identified that structural features clearly affect detection capability in IMS, which can be attributed to the different bonding states of halogens within the molecule. Then we subsequently established that the resulting different bond strengths also determine the degree of mutual influence when various halogenated substances are simultaneously investigated. Regarding the experimental conditions, we observed that increasing humidity generally leads to a decrease in the relative abundance of product ions. However, the effect of humidity strongly depends on the way in which the water vapor is transported into the ion mobility spectrometer (carrier or drift gas). In contrast to the results achieved which were affected by increased humidity, elevating IMS cell temperatures resulted in more accurate detection of all substances investigated.

Tài liệu tham khảo

Arneth J-D, Milde G, Kerndorff H, Schleyer R (1989) Waste deposit influences on groundwater quality as a tool for waste type and site selection for final storage quality. In: Baccini P (ed) The landfill, vol 20, Lecture Notes in Earth Sciences. Springer, Berlin, pp 399–415. doi:10.1007/BFb0011276 Remediation, Program R, Remediation WDoNR, Program R (2003) Understanding Chlorinated Hydrocarbon Behavior in Groundwater : Investigation, Assessment and Limitations of Monitored Natural Attenuation. Wisconsin Department of Natural Resources, Remediation and Redevelopment Program Baumbach JI (2006) Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384:1059–1070 Eiceman GA, Stone JA (2004) Ion mobility spectrometers in national defense. Anal Chem 76:390a–397a Karpas Z, Chaim W, Gdalevsky R, Tilman B, Lorber A (2002) Novel application for ion mobility spectrometry: diagnosing vaginal infections through measurement of biogenic amines. Anal Chim Acta 474:115–123 Koester CJ, Moulik A (2005) Trends in environmental analysis. Anal Chem 77:3737–3754 Stlouis RH, Hill HH (1990) Ion mobility spectrometry in analytical-chemistry. Crit Rev Anal Chem 21:321–355 Gutierrez-Osuna R (2002) Pattern analysis for machine olfaction: a review. IEEE Sensors J 2:189–202 Simpson G, Klasmeier M, Hill H, Atkinson D, Radolovich G, Lopez Avila V, Jones TL (1996) Evaluation of gas chromatography coupled with ion mobility spectrometry for monitoring vinyl chloride and other chlorinated and aromatic compounds in air samples. J High Resolut Chromatogr 19:301–312 Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375 Borsdorf H, Mayer T (2011) Response of halogenated compounds in ion mobility spectrometry depending on their structural features. Talanta 83:815–822 Mayer T, Borsdorf H (2013) Mutual influences of halogenated compounds during atmospheric pressure chemical ionization. Int J Ion Mobil Spectrom 16:229–235 Borsdorf H, Mayer T (2012) Temperature dependence of ion mobility signals of halogenated compounds. Talanta 101:17–23 Mayer T, Borsdorf H (2014) Accuracy of ion mobility measurements dependent on the influence of humidity. Anal Chem 86:5069–5076 Bertran J, Gallardo I, Moreno M, Saveant JM (1992) Dissociative electron-transfer - abinitio study of the carbon halogen bond reductive cleavage in methyl and perfluoromethyl halides - role of the solvent. J Am Chem Soc 114:9576–9583 Hauptmann S (1991) Organic chemistry. Deutscher Verlag für Grundstoffindustrie, Leipzig