Which graphs are determined by their spectrum?

Linear Algebra and Its Applications - Tập 373 - Trang 241-272 - 2003
Edwin van Dam1, Willem H. Haemers1
1Department of Econometrics and O.R., Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berlekamp, 1973, A strongly regular graph derived from the perfect ternary Golay code, 25

Biggs, 1974

Bose, 1963, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math., 13, 389, 10.2140/pjm.1963.13.389

Botti, 1993, Almost all trees share a complete set of immanantal polynomials, J. Graph Theory, 17, 467, 10.1002/jgt.3190170404

Brooks, 1999, Non-Sunada graphs, Ann. Inst. Fourier (Grenoble), 49, 707, 10.5802/aif.1688

Brouwer, 1983, The uniqueness of the strongly regular graph on 77 points, J. Graph Theory, 7, 455, 10.1002/jgt.3190070411

Brouwer, 1996, Strongly regular graphs, 667

Brouwer, 1989

Brouwer, 1993, The Gewirtz graph: An exercise in the theory of graph spectra, European J. Combin., 14, 397, 10.1006/eujc.1993.1044

Brouwer, 1992, Structure and uniqueness of the (81,20,1,6) strongly regular graph, Discrete Math., 106/107, 77, 10.1016/0012-365X(92)90532-K

Brualdi, 1991

F.C. Bussemaker, D.M. Cvetković, J.J. Seidel, Graphs related to exceptional root systems, T.H.-Report 76-WSK-05, Eindhoven University of Technology, 1976

Cameron, 1978, Strongly regular graph having strongly regular subconstituents, J. Algebra, 55, 257, 10.1016/0021-8693(78)90220-X

Cameron, 1976, Line graphs, root systems, and elliptic geometry, J. Algebra, 43, 305, 10.1016/0021-8693(76)90162-9

Chang, 1960, Association schemes of partially balanced block designs with parameters v=28, n1=12, n2=15, and p112=4, Sci. Record, 4, 12

F.R.K. Chung, Spectral Graph Theory, AMS, Providence, RI, 1994

Collatz, 1957, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg, 21, 63, 10.1007/BF02941924

K. Coolsaet, J. Degraer, A computer assisted proof of the uniqueness of the Perkel graph, Designs, Codes and Cryptography, in press

Cvetković, 1971, Graphs and their spectra, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 354–356, 1

Cvetković, 1988, Constructing trees with given eigenvalues and angles, Linear Algebra Appl., 105, 1, 10.1016/0024-3795(88)90002-X

D.M. Cvetković, M. Doob, Root systems, forbidded subgraphs and spectral characterizations of line graphs, in: Cvetković, Gutman, Pisanski, Tošić (Eds.) Graph Theory, Proc. Fourth Yugoslav Sem. Graph Theory, Novi Sad, 1983, pp. 69–99

D.M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, in: Annals of Discrete Mathematics, vol. 36, North-Holland, Amsterdam, 1988

Cvetković, 1995

D.M. Cvetković, P. Rowlinson, S. Simić, Spectral generalizations of line graphs; a research monograph on graphs with least eigenvalue −2, manuscript

van Dam, 1995, Regular graphs with four eigenvalues, Linear Algebra Appl., 226–228, 139, 10.1016/0024-3795(94)00346-F

van Dam, 1998, Nonregular graphs with three eigenvalues, J. Combin. Theory B, 73, 101, 10.1006/jctb.1998.1815

van Dam, 1998, Graphs with constant μ and μ, Discrete Math., 182, 293, 10.1016/S0012-365X(97)00150-7

van Dam, 2002, Spectral characterizations of some distance-regular graphs, J. Algebra Combin., 15, 189, 10.1023/A:1013847004932

E.R. van Dam, J.H. Koolen, private communication

van Dam, 1998, Small regular graphs with four eigenvalues, Discrete Math., 189, 233, 10.1016/S0012-365X(98)00085-5

E.R. van Dam, E. Spence, Combinatorial designs with two singular values I. Uniform multiplicative designs, in preparation

Doob, 1979, Seidel switching and cospectral graphs with four distinct eigenvalues, Ann. New York Acad. Sci., 319, 164, 10.1111/j.1749-6632.1979.tb32787.x

Doob, 2002, The complement of the path is determined by its spectrum, Linear Algebra Appl., 356, 57, 10.1016/S0024-3795(02)00323-3

Fiol, 1997, From local adjacency polynomials to locally pseudo-distance-regular graphs, J. Combin. Theory B, 71, 162, 10.1006/jctb.1997.1778

Fisher, 1966, On hearing the shape of a drum, J. Combin. Theory, 1, 105, 10.1016/S0021-9800(66)80008-X

Fujii, 1999, Isospectral graphs and isoperimetric constants, Discrete Math., 207, 33, 10.1016/S0012-365X(99)00133-8

Gewitz, 1969, Graphs with maximal even girth, Canad. J. Math., 21, 915, 10.4153/CJM-1969-101-9

Godsil, 1993

Godsil, 1976, Some computational results on the spectra of graphs, vol. 560, 73

Godsil, 1982, Constructing cospectral graphs, Aequationes Math., 25, 257, 10.1007/BF02189621

Goethals, 1975, The regular two-graph on 276 vertices, Discrete Math., 12, 143, 10.1016/0012-365X(75)90029-1

Günthard, 1956, Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta, 39, 1645, 10.1002/hlca.19560390623

Haemers, 1996, Distance-regularity and the spectrum of graphs, Linear Algebra Appl., 236, 265, 10.1016/0024-3795(94)00166-9

Haemers, 1995, Graphs cospectral with distance-regular graphs, Linear and Multilinear Algebra, 39, 91, 10.1080/03081089508818382

W.H. Haemers, E. Spence, Enumeration of cospectral graphs, European J. Combin., in press. Also: Center discussion paper 2002-90, Tilburg University

Halbeisen, 1999, Generation of isospectral graphs, J. Graph Theory, 31, 255, 10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.0.CO;2-6

Halbeisen, 2000, Reconstruction of weighted graphs by their spectrum, European J. Combin., 21, 641, 10.1006/eujc.1999.0410

Hoffman, 1963, On the polynomial of a graph, Amer. Math. Monthly, 70, 30, 10.2307/2312780

Huang, 1999, Spectral characterization of some generalized odd graphs, Graphs Combin., 15, 195, 10.1007/s003730050040

Johnson, 1980, A note on cospectral graphs, J. Combin. Theory B, 28, 96, 10.1016/0095-8956(80)90058-1

Kac, 1966, Can one hear the shape of a drum?, Amer. Math. Monthly, 73, 1, 10.2307/2313748

Lepović, 2002, No starlike trees are cospectral, Discrete Math., 242, 291, 10.1016/S0012-365X(01)00169-8

J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry, Proc. Nederl. Akad. Wetenschappen A 69 (1966) 335–348

Lubotzky, 1995, Cayley graphs: eigenvalues, expanders and random walks, vol. 218, 155

McKay, 1979, On the spectral characterisation of trees, Ars Combin., 3, 219

McKay, 2001, Classification of regular two-graphs on 36 and 38 vertices, Austral. J. Combin., 24, 293

Merris, 1997, Large families of Laplacian isospectral graphs, Linear and Multilinear Algebra, 43, 201, 10.1080/03081089708818525

Payne, 1984

Rowlinson, 1996, The characteristic polynomials of modified graphs, Discrete Appl. Math., 67, 209, 10.1016/0166-218X(96)85159-6

H. Sachs, Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau 13 (1967) 405–412

Schwenk, 1973, Almost all trees are cospectral, 275

Seidel, 1968, Strongly regular graphs with (−1,1,0) adjacency matrix having eigenvalue 3, Linear Algebra Appl., 1, 198, 10.1016/0024-3795(68)90008-6

J.J. Seidel, Graphs and two-graphs, in: F. Hoffman et al. (Eds.) Proc. 5th Southeast. Conf. Comb., Graph Th., Comp., Utilitas Mathematica Pub., Winnipeg, 1974, pp. 125–143

J.J. Seidel, A survey of two-graphs, in: Teorie Combinatorie (Proc. Intern. Coll., Roma 1973), Accad. Nac. Lincei, Roma, 1976, pp. 481–511

Seress, 2000, Large families of cospectral graphs, Designs, Codes and Cryptography, 21, 205, 10.1023/A:1008352030960

Shrikhande, 1959, The uniqueness of the L2 association scheme, Ann. Math. Statist., 30, 781, 10.1214/aoms/1177706207

Whitney, 1932, Congruent graphs and the connectivity of graphs, Amer. J. Math., 54, 150, 10.2307/2371086