Which graphs are determined by their spectrum?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Berlekamp, 1973, A strongly regular graph derived from the perfect ternary Golay code, 25
Biggs, 1974
Bose, 1963, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math., 13, 389, 10.2140/pjm.1963.13.389
Botti, 1993, Almost all trees share a complete set of immanantal polynomials, J. Graph Theory, 17, 467, 10.1002/jgt.3190170404
Brouwer, 1983, The uniqueness of the strongly regular graph on 77 points, J. Graph Theory, 7, 455, 10.1002/jgt.3190070411
Brouwer, 1996, Strongly regular graphs, 667
Brouwer, 1989
Brouwer, 1993, The Gewirtz graph: An exercise in the theory of graph spectra, European J. Combin., 14, 397, 10.1006/eujc.1993.1044
Brouwer, 1992, Structure and uniqueness of the (81,20,1,6) strongly regular graph, Discrete Math., 106/107, 77, 10.1016/0012-365X(92)90532-K
Brualdi, 1991
F.C. Bussemaker, D.M. Cvetković, J.J. Seidel, Graphs related to exceptional root systems, T.H.-Report 76-WSK-05, Eindhoven University of Technology, 1976
Cameron, 1978, Strongly regular graph having strongly regular subconstituents, J. Algebra, 55, 257, 10.1016/0021-8693(78)90220-X
Cameron, 1976, Line graphs, root systems, and elliptic geometry, J. Algebra, 43, 305, 10.1016/0021-8693(76)90162-9
Chang, 1960, Association schemes of partially balanced block designs with parameters v=28, n1=12, n2=15, and p112=4, Sci. Record, 4, 12
K. Coolsaet, J. Degraer, A computer assisted proof of the uniqueness of the Perkel graph, Designs, Codes and Cryptography, in press
Cvetković, 1971, Graphs and their spectra, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 354–356, 1
Cvetković, 1988, Constructing trees with given eigenvalues and angles, Linear Algebra Appl., 105, 1, 10.1016/0024-3795(88)90002-X
D.M. Cvetković, M. Doob, Root systems, forbidded subgraphs and spectral characterizations of line graphs, in: Cvetković, Gutman, Pisanski, Tošić (Eds.) Graph Theory, Proc. Fourth Yugoslav Sem. Graph Theory, Novi Sad, 1983, pp. 69–99
D.M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, in: Annals of Discrete Mathematics, vol. 36, North-Holland, Amsterdam, 1988
Cvetković, 1995
D.M. Cvetković, P. Rowlinson, S. Simić, Spectral generalizations of line graphs; a research monograph on graphs with least eigenvalue −2, manuscript
van Dam, 1995, Regular graphs with four eigenvalues, Linear Algebra Appl., 226–228, 139, 10.1016/0024-3795(94)00346-F
van Dam, 1998, Nonregular graphs with three eigenvalues, J. Combin. Theory B, 73, 101, 10.1006/jctb.1998.1815
van Dam, 1998, Graphs with constant μ and μ, Discrete Math., 182, 293, 10.1016/S0012-365X(97)00150-7
van Dam, 2002, Spectral characterizations of some distance-regular graphs, J. Algebra Combin., 15, 189, 10.1023/A:1013847004932
E.R. van Dam, J.H. Koolen, private communication
van Dam, 1998, Small regular graphs with four eigenvalues, Discrete Math., 189, 233, 10.1016/S0012-365X(98)00085-5
E.R. van Dam, E. Spence, Combinatorial designs with two singular values I. Uniform multiplicative designs, in preparation
Doob, 1979, Seidel switching and cospectral graphs with four distinct eigenvalues, Ann. New York Acad. Sci., 319, 164, 10.1111/j.1749-6632.1979.tb32787.x
Doob, 2002, The complement of the path is determined by its spectrum, Linear Algebra Appl., 356, 57, 10.1016/S0024-3795(02)00323-3
Fiol, 1997, From local adjacency polynomials to locally pseudo-distance-regular graphs, J. Combin. Theory B, 71, 162, 10.1006/jctb.1997.1778
Fisher, 1966, On hearing the shape of a drum, J. Combin. Theory, 1, 105, 10.1016/S0021-9800(66)80008-X
Fujii, 1999, Isospectral graphs and isoperimetric constants, Discrete Math., 207, 33, 10.1016/S0012-365X(99)00133-8
Godsil, 1993
Godsil, 1976, Some computational results on the spectra of graphs, vol. 560, 73
Goethals, 1975, The regular two-graph on 276 vertices, Discrete Math., 12, 143, 10.1016/0012-365X(75)90029-1
Günthard, 1956, Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta, 39, 1645, 10.1002/hlca.19560390623
Haemers, 1996, Distance-regularity and the spectrum of graphs, Linear Algebra Appl., 236, 265, 10.1016/0024-3795(94)00166-9
Haemers, 1995, Graphs cospectral with distance-regular graphs, Linear and Multilinear Algebra, 39, 91, 10.1080/03081089508818382
W.H. Haemers, E. Spence, Enumeration of cospectral graphs, European J. Combin., in press. Also: Center discussion paper 2002-90, Tilburg University
Halbeisen, 1999, Generation of isospectral graphs, J. Graph Theory, 31, 255, 10.1002/(SICI)1097-0118(199907)31:3<255::AID-JGT7>3.0.CO;2-6
Halbeisen, 2000, Reconstruction of weighted graphs by their spectrum, European J. Combin., 21, 641, 10.1006/eujc.1999.0410
Huang, 1999, Spectral characterization of some generalized odd graphs, Graphs Combin., 15, 195, 10.1007/s003730050040
Johnson, 1980, A note on cospectral graphs, J. Combin. Theory B, 28, 96, 10.1016/0095-8956(80)90058-1
Lepović, 2002, No starlike trees are cospectral, Discrete Math., 242, 291, 10.1016/S0012-365X(01)00169-8
J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry, Proc. Nederl. Akad. Wetenschappen A 69 (1966) 335–348
Lubotzky, 1995, Cayley graphs: eigenvalues, expanders and random walks, vol. 218, 155
McKay, 1979, On the spectral characterisation of trees, Ars Combin., 3, 219
McKay, 2001, Classification of regular two-graphs on 36 and 38 vertices, Austral. J. Combin., 24, 293
Merris, 1997, Large families of Laplacian isospectral graphs, Linear and Multilinear Algebra, 43, 201, 10.1080/03081089708818525
Payne, 1984
Rowlinson, 1996, The characteristic polynomials of modified graphs, Discrete Appl. Math., 67, 209, 10.1016/0166-218X(96)85159-6
H. Sachs, Über Teiler, Faktoren und charakteristische Polynome von Graphen, Teil II, Wiss. Z. TH Ilmenau 13 (1967) 405–412
Schwenk, 1973, Almost all trees are cospectral, 275
Seidel, 1968, Strongly regular graphs with (−1,1,0) adjacency matrix having eigenvalue 3, Linear Algebra Appl., 1, 198, 10.1016/0024-3795(68)90008-6
J.J. Seidel, Graphs and two-graphs, in: F. Hoffman et al. (Eds.) Proc. 5th Southeast. Conf. Comb., Graph Th., Comp., Utilitas Mathematica Pub., Winnipeg, 1974, pp. 125–143
J.J. Seidel, A survey of two-graphs, in: Teorie Combinatorie (Proc. Intern. Coll., Roma 1973), Accad. Nac. Lincei, Roma, 1976, pp. 481–511
Seress, 2000, Large families of cospectral graphs, Designs, Codes and Cryptography, 21, 205, 10.1023/A:1008352030960
Shrikhande, 1959, The uniqueness of the L2 association scheme, Ann. Math. Statist., 30, 781, 10.1214/aoms/1177706207