Which fMRI clustering gives good brain parcellations?

Bertrand Thirion1,2, Gaël Varoquaux1,2, Elvis Dohmatob1,2, Jean‐Baptiste Poline1,3
1Commissariat à l'énergie Atomique et Aux Énergies Alternatives, DSV, Neurospin, I2 BM, Gif-sur-Yvette, France
2Parietal Project-Team, Institut National de Recherche en Informatique et Automatique, Palaiseau, France
3Henry H. Wheeler Jr. Brain Imaging Center, University of California at Berkeley, Berkeley, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abraham, 2013, Extracting brain regions from rest fMRI with total-variation constrained dictionary learning, MICCAI—16th International Conference on Medical Image Computing and Computer Assisted Intervention—2013, 10.1007/978-3-642-40763-5_75

Barch, 2013, Function in the human connectome: task-fmri and individual differences in behavior, Neuroimage, 80, 169, 10.1016/j.neuroimage.2013.05.033

Blumensath, 2012, Resting-state FMRI, MICCAI, 15(Pt 2), 188, 10.1007/978-3-642-33418-4_24

Bohland, 2009, The brain atlas concordance problem: quantitative comparison of anatomical parcellations, PLoS ONE, 4, e7200, 10.1371/journal.pone.0007200

Chaari, 2012, Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework, Med. Image. Comput. Comput. Assist. Interv, 15(Pt 3), 180, 10.1007/978-3-642-33454-2_23

Chen, 2012, Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering, Med. Image. Comput. Comput. Assist. Interv, 15(Pt 3), 297, 10.1109/TMI.2013.2259248

Cieslik, 2012, Is there “one” dlpfc in cognitive action control? evidence for heterogeneity from co-activation-based parcellation, Cereb. Cortex, 23, 2677, 10.1093/cercor/bhs256

Cohen, 2008, Defining functional areas in individual human brains using resting functional connectivity mri, Neuroimage, 41, 45, 10.1016/j.neuroimage.2008.01.066

Craddock, 2012, A whole brain fMRI, Hum. Brain Mapp, 33, 1914, 10.1002/hbm.21333

Da Mota, 2013, Enhancing the reproducibility of group analysis with randomized brain parcellations, MICCAI—16th International Conference on Medical Image Computing and Computer Assisted Intervention—2013, 10.1007/978-3-642-40763-5_73

Desikan, 2006, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage, 31, 968, 10.1016/j.neuroimage.2006.01.021

Diedrichsen, 2009, A probabilistic mr atlas of the human cerebellum, Neuroimage, 46, 39, 10.1016/j.neuroimage.2009.01.045

Eickhoff, 2011, Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation, Neuroimage, 57, 938, 10.1016/j.neuroimage.2011.05.021

Eickhoff, 2008, Organizational principles of human visual cortex revealed by receptor mapping, Cereb. Cortex, 18, 2637, 10.1093/cercor/bhn024

Fischl, 2008, Cortical folding patterns and predicting cytoarchitecture, Cereb. Cortex, 18, 1973, 10.1093/cercor/bhm225

Flandin, 2002, Improved detection sensitivity in functional MRI data using a brain parcelling technique, MICCAI, 2488, 467, 10.1007/3-540-45786-0_58

Ghosh, 2013, Predicting treatment response from resting state fmri data: comparison of parcellation approaches, 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 225, 10.1109/PRNI.2013.64

Golland, 2007, Detection of spatial activation patterns as unsupervised segmentation of fMRI data, Med. Image. Comput. Comput. Assist. Interv, 10(Pt 1), 110, 10.1007/978-3-540-75757-3_14

Hanson, 2007, Dense mode clustering in brain maps, Magn. Reson. Imag, 25, 1249, 10.1016/j.mri.2007.03.013

Johnson, 1967, Hierarchical clustering schemes, Psychometrika, 32, 241, 10.1007/BF02289588

Kahnt, 2012, Connectivity-based parcellation of the human orbitofrontal cortex, J. Neurosci, 32, 6240, 10.1523/JNEUROSCI.0257-12.2012

Kiviniemi, 2009, Functional segmentation of the brain cortex using high model order group pica, Hum. Brain Mapp, 30, 3865, 10.1002/hbm.20813

Klein, 2012, 101 labeled brain images and a consistent human cortical labeling protocol, Front. Neurosci, 6, 10.3389/fnins.2012.00171

LaConte, 2003, The evaluation of preprocessing choices in single-subject BOLD, Neuroimage, 18, 10, 10.1006/nimg.2002.1300

Lashkari, 2012, Search for patterns of functional specificity in the brain: a nonparametric hierarchical bayesian model for group fMRI, Neuroimage, 59, 1348, 10.1016/j.neuroimage.2011.08.031

Lashkari, 2010, Discovering structure in the space of fMRI, Neuroimage, 50, 1085, 10.1016/j.neuroimage.2009.12.106

Mazziotta, 2001, A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (icbm), Philos. Trans. R. Soc. Lond. B Biol. Sci, 356, 1293, 10.1098/rstb.2001.0915

Meng, 1998, Fast em-type implementations for mixed effects models, J. R. Stat. Soc. B, 60, 559, 10.1111/1467-9868.00140

Michel, 2012, A supervised clustering approach for fMRI, Pattern Recognit, 45, 2041, 10.1016/j.patcog.2011.04.006

Ng, 2001, On spectral clustering: analysis and an algorithm, NIPS, 849

Nieto-Castanon, 2003, Region of interest based analysis of functional imaging data, Neuroimage, 19, 1303, 10.1016/S1053-8119(03)00188-5

Orban, 2014, The richness of task-evoked hemodynamic responses defines a pseudohierarchy of functionally meaningful brain networks, Cereb. Cortex, 10.1093/cercor/bhu064

Pedregosa, 2011, Scikit-learn: machine learning in P, J. Mach. Learn. Res, 12, 2825, 10.1016/j.patcog.2011.04.006

Pinel, 2007, Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neurosci, 8, 91, 10.1186/1471-2202-8-91

Robinson, 2013, Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation, Information Processing in Medical Imaging, 475, 10.1007/978-3-642-38868-2_40

Roca, 2010, Inter-subject connectivity-based parcellation of a patch of cerebral cortex, Med. Image. Comput. Comput. Assist. Interv, 13(Pt 2), 347, 10.1007/978-3-642-15745-5_43

Sabuncu, 2010, Function-based intersubject alignment of human cortical anatomy, Cereb. Cortex, 20, 130, 10.1093/cercor/bhp085

Saxe, 2006, Divide and conquer: a defense of functional localizers, Neuroimage, 30, 1088, 10.1016/j.neuroimage.2005.12.062

Schwarz, 1978, Estimating the dimension of a model, Ann. Stat, 6, 461, 10.1214/aos/1176344136

Shattuck, 2008, Construction of a 3d probabilistic atlas of human cortical structures, Neuroimage, 39, 1064, 10.1016/j.neuroimage.2007.09.031

Shi, 2000, Normalized cuts and image segmentation, Technical Report

Simon, 2004, Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number, Neuroimage, 23, 1192, 10.1016/j.neuroimage.2004.09.023

Thirion, 2006, Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fmri datasets, Hum. Brain Mapp, 27, 678, 10.1002/hbm.20210

Tucholka, 2008, Probabilistic anatomo-functional parcellation of the cortex: how many regions?, MICCAI, 11(Pt 2), 399, 10.1007/978-3-540-85990-1_48

Tzourio-Mazoyer, 2002, Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni MRI single-subject brain, Neuroimage, 15, 273, 10.1006/nimg.2001.0978

Varoquaux, 2011, Multi-subject dictionary learning to segment an atlas of brain spontaneous activity, Inf. Process. Med. Imag, 22, 562, 10.1007/978-3-642-22092-0_46

Varoquaux, 2012, Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering, ICML

Varoquaux, 2010, A group model for stable multi-subject ica on fmri datasets, Neuroimage, 51, 288, 10.1016/j.neuroimage.2010.02.010

Varoquaux, 2013, Cohort-level brain mapping: learning cognitive atoms to single out specialized regions, Inform. Process. Med. Imag, 7917, 438, 10.1007/978-3-642-38868-2_37

Vinh, 2009, Information theoretic measures for clusterings comparison: is a correction for chance necessary?, ICML, 1073, 10.1145/1553374.1553511

Ward, 1963, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc, 58, 236, 10.1080/01621459.1963.10500845

Wig, 2013, Parcellating an individual subject’s cortical and subcortical brain structures using snowball sampling of resting-state correlations, Cereb. Cortex, 10.1093/cercor/bht056

Yeo, 2011, The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J. Neurophysiol, 106, 1125, 10.1152/jn.00338.2011

Yu, 2003, Multiclass spectral clustering, 2003 Proceedings of the Ninth IEEE International Conference on Computer Vision, 313, 10.1109/ICCV.2003.1238361