Which fMRI clustering gives good brain parcellations?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abraham, 2013, Extracting brain regions from rest fMRI with total-variation constrained dictionary learning, MICCAI—16th International Conference on Medical Image Computing and Computer Assisted Intervention—2013, 10.1007/978-3-642-40763-5_75
Barch, 2013, Function in the human connectome: task-fmri and individual differences in behavior, Neuroimage, 80, 169, 10.1016/j.neuroimage.2013.05.033
Bohland, 2009, The brain atlas concordance problem: quantitative comparison of anatomical parcellations, PLoS ONE, 4, e7200, 10.1371/journal.pone.0007200
Chaari, 2012, Hemodynamic-informed parcellation of fMRI data in a joint detection estimation framework, Med. Image. Comput. Comput. Assist. Interv, 15(Pt 3), 180, 10.1007/978-3-642-33454-2_23
Chen, 2012, Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering, Med. Image. Comput. Comput. Assist. Interv, 15(Pt 3), 297, 10.1109/TMI.2013.2259248
Cieslik, 2012, Is there “one†dlpfc in cognitive action control? evidence for heterogeneity from co-activation-based parcellation, Cereb. Cortex, 23, 2677, 10.1093/cercor/bhs256
Cohen, 2008, Defining functional areas in individual human brains using resting functional connectivity mri, Neuroimage, 41, 45, 10.1016/j.neuroimage.2008.01.066
Da Mota, 2013, Enhancing the reproducibility of group analysis with randomized brain parcellations, MICCAI—16th International Conference on Medical Image Computing and Computer Assisted Intervention—2013, 10.1007/978-3-642-40763-5_73
Desikan, 2006, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage, 31, 968, 10.1016/j.neuroimage.2006.01.021
Diedrichsen, 2009, A probabilistic mr atlas of the human cerebellum, Neuroimage, 46, 39, 10.1016/j.neuroimage.2009.01.045
Eickhoff, 2011, Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation, Neuroimage, 57, 938, 10.1016/j.neuroimage.2011.05.021
Eickhoff, 2008, Organizational principles of human visual cortex revealed by receptor mapping, Cereb. Cortex, 18, 2637, 10.1093/cercor/bhn024
Fischl, 2008, Cortical folding patterns and predicting cytoarchitecture, Cereb. Cortex, 18, 1973, 10.1093/cercor/bhm225
Flandin, 2002, Improved detection sensitivity in functional MRI data using a brain parcelling technique, MICCAI, 2488, 467, 10.1007/3-540-45786-0_58
Ghosh, 2013, Predicting treatment response from resting state fmri data: comparison of parcellation approaches, 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), 225, 10.1109/PRNI.2013.64
Golland, 2007, Detection of spatial activation patterns as unsupervised segmentation of fMRI data, Med. Image. Comput. Comput. Assist. Interv, 10(Pt 1), 110, 10.1007/978-3-540-75757-3_14
Hanson, 2007, Dense mode clustering in brain maps, Magn. Reson. Imag, 25, 1249, 10.1016/j.mri.2007.03.013
Kahnt, 2012, Connectivity-based parcellation of the human orbitofrontal cortex, J. Neurosci, 32, 6240, 10.1523/JNEUROSCI.0257-12.2012
Kiviniemi, 2009, Functional segmentation of the brain cortex using high model order group pica, Hum. Brain Mapp, 30, 3865, 10.1002/hbm.20813
Klein, 2012, 101 labeled brain images and a consistent human cortical labeling protocol, Front. Neurosci, 6, 10.3389/fnins.2012.00171
LaConte, 2003, The evaluation of preprocessing choices in single-subject BOLD, Neuroimage, 18, 10, 10.1006/nimg.2002.1300
Lashkari, 2012, Search for patterns of functional specificity in the brain: a nonparametric hierarchical bayesian model for group fMRI, Neuroimage, 59, 1348, 10.1016/j.neuroimage.2011.08.031
Lashkari, 2010, Discovering structure in the space of fMRI, Neuroimage, 50, 1085, 10.1016/j.neuroimage.2009.12.106
Mazziotta, 2001, A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (icbm), Philos. Trans. R. Soc. Lond. B Biol. Sci, 356, 1293, 10.1098/rstb.2001.0915
Meng, 1998, Fast em-type implementations for mixed effects models, J. R. Stat. Soc. B, 60, 559, 10.1111/1467-9868.00140
Michel, 2012, A supervised clustering approach for fMRI, Pattern Recognit, 45, 2041, 10.1016/j.patcog.2011.04.006
Ng, 2001, On spectral clustering: analysis and an algorithm, NIPS, 849
Nieto-Castanon, 2003, Region of interest based analysis of functional imaging data, Neuroimage, 19, 1303, 10.1016/S1053-8119(03)00188-5
Orban, 2014, The richness of task-evoked hemodynamic responses defines a pseudohierarchy of functionally meaningful brain networks, Cereb. Cortex, 10.1093/cercor/bhu064
Pedregosa, 2011, Scikit-learn: machine learning in P, J. Mach. Learn. Res, 12, 2825, 10.1016/j.patcog.2011.04.006
Pinel, 2007, Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neurosci, 8, 91, 10.1186/1471-2202-8-91
Robinson, 2013, Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation, Information Processing in Medical Imaging, 475, 10.1007/978-3-642-38868-2_40
Roca, 2010, Inter-subject connectivity-based parcellation of a patch of cerebral cortex, Med. Image. Comput. Comput. Assist. Interv, 13(Pt 2), 347, 10.1007/978-3-642-15745-5_43
Sabuncu, 2010, Function-based intersubject alignment of human cortical anatomy, Cereb. Cortex, 20, 130, 10.1093/cercor/bhp085
Saxe, 2006, Divide and conquer: a defense of functional localizers, Neuroimage, 30, 1088, 10.1016/j.neuroimage.2005.12.062
Shattuck, 2008, Construction of a 3d probabilistic atlas of human cortical structures, Neuroimage, 39, 1064, 10.1016/j.neuroimage.2007.09.031
Shi, 2000, Normalized cuts and image segmentation, Technical Report
Simon, 2004, Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number, Neuroimage, 23, 1192, 10.1016/j.neuroimage.2004.09.023
Thirion, 2006, Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fmri datasets, Hum. Brain Mapp, 27, 678, 10.1002/hbm.20210
Tucholka, 2008, Probabilistic anatomo-functional parcellation of the cortex: how many regions?, MICCAI, 11(Pt 2), 399, 10.1007/978-3-540-85990-1_48
Tzourio-Mazoyer, 2002, Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni MRI single-subject brain, Neuroimage, 15, 273, 10.1006/nimg.2001.0978
Varoquaux, 2011, Multi-subject dictionary learning to segment an atlas of brain spontaneous activity, Inf. Process. Med. Imag, 22, 562, 10.1007/978-3-642-22092-0_46
Varoquaux, 2012, Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering, ICML
Varoquaux, 2010, A group model for stable multi-subject ica on fmri datasets, Neuroimage, 51, 288, 10.1016/j.neuroimage.2010.02.010
Varoquaux, 2013, Cohort-level brain mapping: learning cognitive atoms to single out specialized regions, Inform. Process. Med. Imag, 7917, 438, 10.1007/978-3-642-38868-2_37
Vinh, 2009, Information theoretic measures for clusterings comparison: is a correction for chance necessary?, ICML, 1073, 10.1145/1553374.1553511
Ward, 1963, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc, 58, 236, 10.1080/01621459.1963.10500845
Wig, 2013, Parcellating an individual subject’s cortical and subcortical brain structures using snowball sampling of resting-state correlations, Cereb. Cortex, 10.1093/cercor/bht056
Yeo, 2011, The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J. Neurophysiol, 106, 1125, 10.1152/jn.00338.2011