When SEM becomes a deceptive tool of analysis: the unexpected discovery of epidermal glands with stalked ducts on the ultimate legs of geophilomorph centipedes

Frontiers in Zoology - Tập 18 - Trang 1-19 - 2021
Andy Sombke1, Carsten H. G. Müller2
1Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Vienna, Austria
2University of Greifswald, Zoological Institute and Museum, General and Systematic Zoology, Greifswald, Germany

Tóm tắt

The jointed appendage is a key novelty in arthropod evolution and arthropod legs are known to vary enormously in relation to function. Among centipedes, the ultimate legs always are distinctly different from locomotory legs, and different centipede taxa evolved different structural and functional modifications. In Geophilomorpha (soil centipedes), ultimate legs do not participate in locomotion and were interpret to serve a sensory function. They can be sexually dimorphic and in some species, male ultimate legs notably appear “hairy”. It can be assumed that the high abundance of sensilla indicates a pronounced sensory function. This study seeks for assessing the sensory diversity, however, documents the surprising and unique case of an extensive glandular epithelium in the ultimate legs of three phylogenetically distant species. The tightly aggregated epidermal glands with stalked ducts – mistakenly thought to be sensilla – were scrutinized using a multimodal microscopic approach comprising histology as well as scanning and transmission electron microscopy in Haplophilus subterraneus. Hence, this is the first detailed account on centipede ultimate legs demonstrating an evolutionary transformation into a “secretory leg”. Additionally, we investigated sensory structures as well as anatomical features using microCT analysis. Contrary to its nomination as a tarsus, tarsus 1 possesses intrinsic musculature, which is an indication that this podomere might be a derivate of the tibia. The presence and identity of ultimate leg associated epidermal glands with stalked ducts is a new discovery for myriapods. A pronounced secretory as well as moderate sensory function in Haplophilus subterraneus can be concluded. The set of characters will improve future taxonomic studies, to test the hypotheses whether the presence of these specialized glands is a common feature in Geophilomorpha, and that tarsus 1 may be a derivate of the tibia. As the number of epidermal glands with stalked ducts is sexually dimorphic, their function might be connected to reproduction or a sex-specific defensive role. Our results, in particular the unexpected discovery of ‘glandular hairs’, may account for a striking example for how deceptive morphological descriptions of epidermal organs may be, if based on non-invasive techniques alone.

Tài liệu tham khảo

Altner H, Prillinger L. Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol. 1980;67:69–139. https://doi.org/10.1016/S0074-7696(08)62427-4. Keil TA, Steinbrecht RA. Mechanosensitive and olfactory sensilla of insects. In: Insect Ultrastruct. Boston: Springer; 1984. p. 477–516. Keil TA. Sensory cilia in arthropods. Arthropod Struct Dev. 2012;41(6):515–34. https://doi.org/10.1016/j.asd.2012.07.001. Kenning M, Müller CHG, Sombke A. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ. 2017;5:e4023. https://doi.org/10.7717/peerj.4023. Kronmüller C, Lewis JGJ. On the function of the ultimate legs of some Scolopendridae (Chilopoda, Scolopendromorpha). ZooKeys. 2015;510(510):269–78. https://doi.org/10.3897/zookeys.510.8674. Kenning M, Schendel V, Müller CHG, Sombke A. Comparative morphology of ultimate and walking legs in the centipede Lithobius forficatus (Myriapoda) with functional implications. Zool Lett. 2019;5(1):3. https://doi.org/10.1186/s40851-018-0115-x. Verhoeff KW. Abteilung Gliederfüssler: Arthropoda Klasse Chilopoda. Bronns Klassen Ordnungen Tier-Reichs. Leipzig: Akademische Verlagsgesellschaft; 1902. p. 725. Simon HR. Zum Abwehrverhalten von Lithobius forficatus (Myriapoda, Chilopoda). Entomol Z. 1964;74:114–8. Skovmand O, Enghoff H. Stridulation in Alipes grandidieri (Lucas), a Scolopendromorph centipede. Vidensk Meddr Dan Naturh Foren. 1980;142:151–60. Lawrence RF. The biology of the cryptic fauna of forests with special reference to the indigenous forest of South Africa. Capetown: Balkena; 1953. Rajulu SG. A study on the chemo- and mechanoreceptors in the last pair of legs of a geophilomorph centipede Himantarium smuelraji Rajulu (Chilopoda: Myriapoda). Monit Zool Ital NS. 1970;4:55–62. Barber AD. Centipedes. Shrewsbury: Field Studies Council; 2009. Bonato L. Order Geophilomorpha. In: Minelli A, editor. Treatise Zool-Anat Taxon Biol Myriapoda. Leiden: Brill; 2011. p. 407–43. Bonato L, Minelli A. Chilopoda Geophilomorpha of Europe: a revised list of species, with taxonomic and nomenclatorial notes. Zootaxa. 2014;3770(1):1–136. https://doi.org/10.11646/zootaxa.3770.1.1. Bonato L, Edgecombe G, Lewis J, Minelli A, Pereira L, Shelley R, et al. A common terminology for the external anatomy of centipedes (Chilopoda). ZooKeys. 2010;69(69):17–51. https://doi.org/10.3897/zookeys.69.737. Kenning M, Sombke A. Sensing from both ends? Transformation of locomotory into multifunctional appendages in chilopoda (Myriapoda). (published abstract, 17th International Congress of Myriapodology). Trop Nat Hist. 2017;(Suppl.5):22. Eason EH. Centipedes of the British Isles. London & New York: Frederick Warne & Co Ltd; 1964. Klingel H. Indirekte Spermatophorenübertragung bei Geophiliden (Hundertfüssler, Chilopoda). Naturwissenschaften. 1959;46(22):632–3. https://doi.org/10.1007/BF00679126. Schaller F. Indirect sperm transfer by soil arthropods. Annu Rev Entomol. 1971;16(1):407–46. https://doi.org/10.1146/annurev.en.16.010171.002203. Fusco G, Brena C, Minelli A. Cellular processes in the growth of lithobiomorph centipedes (Chilopoda: Lithobiomorpha). A cuticular view. Zool Anz. 2000;239:91–102. Müller CHG, Rosenberg J, Hilken G. Fine structure and phylogenetic significance of “flexo-canal epidermis glands” in Chilopoda. Xylander WER, Voigtländer K, editors. Soil Org. 2009;81:269–94. Müller CHG, Rosenberg J, Hilken G. Ultrastructure, functional morphology and evolution of recto-canal epidermal glands in Myriapoda. Arthropod Struct Dev. 2014;43(1):43–61. https://doi.org/10.1016/j.asd.2013.08.001. Minelli A. Secretions of centipedes. Arthropod venoms. Berlin: Springer; 1978. p. 73–85. Rosenberg J. Die Hundertfüßer. Hohenwarsleben: Westarp Wissenschaften-Verlagsgesellschaft; 2009. Dányi L. Magyarország százlábúi (Chilopoda) I. A taxonómiai bélyegek áttekintése. Állattani Közlemények. 2009;94:29–53. Bonato L, Dányi L, Minelli A. Morphology and phylogeny of Dicellophilus, a centipede genus with a highly disjunct distribution (Chilopoda: Mecistocephalidae). Zool J Linnean Soc. 2010;158(3):501–32. https://doi.org/10.1111/j.1096-3642.2009.00557.x. Stoev P, Akkari N, Komericki A, Edgecombe G, Bonato L. At the end of the rope: Geophilus hadesi sp. n. – the world’s deepest cave-dwelling centipede (Chilopoda, Geophilomorpha, Geophilidae). ZooKeys. 2015;510(510):95–114. https://doi.org/10.3897/zookeys.510.9614. Calvanese VC. Revisão e análise cladística dos gêneros de Aphilodontinae Silvestri, 1909 (Chilopoda, Geophilomorpha, Geophilidae). São Paulo: Instituto de Biociências da Universidade de São Paulo; 2017. Pereira LA. On the identity of Geophilus armatus Silvestri, 1895, a junior synonym of Plateurytion tenebrosus (Meinert, 1886), and other Neotropical members of the genus Plateurytion Attems, 1909, including Plateurytion mauryi n. sp. from the Andes of Argentina (Myriapoda: Chilopoda: Geophilomorpha). Int J Myriap. 2008;1:55–96. Pereira LA. A new species of Schendylops Cook, 1899 from a high plateau of the Córdoba mountains (central Argentina), with notes on other Neotropical members of the genus (Myriapoda: Chilopoda: Geophilomorpha). Int J Myriap. 2008;1(2):205–30. https://doi.org/10.1163/187525408X395940. Pereira LA. Description of Schendylops jeekeli sp. n., a new geophilomorph centipede (Myriapoda: Chilopoda) from the Paranapiacaba fragment of the Atlantic Forest in southeastern Brazil, with complementary notes on similar Neotropical species. Int J Myriap. 2009;2(2):167–214. https://doi.org/10.1163/187525409X12577705044665. Dányi L, Wytwer J. The true identity of Schendyla furcidens Kaczmarek, 1962 (Chilopoda: Schendylidae). Ann Zool. 2012;62:309–16. Tulande-M E, Prado CC, Triana HD. The first Taeniolinum from the Andes Mountains and Colombia (Chilopoda: Geophilomorpha). Zootaxa. 2018;4532(1):113–24. https://doi.org/10.11646/zootaxa.4532.1.7. Rosenberg J. Coxal organs in Geophilomorpha (Chilopoda). Organization and fine structure of the transporting epithelium. Zoomorphology. 1982;100(2):107–20. https://doi.org/10.1007/BF00310357. Bonato L, Drago L, Murienne J. Phylogeny of Geophilomorpha (Chilopoda) inferred from new morphological and molecular evidence. Cladistics. 2014;30(5):485–507. https://doi.org/10.1111/cla.12060. Stoev P, Komerički A, Akkari N, Liu S, Zhou X, Weigand AM, et al. Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae): the first eukaryotic species description combining transcriptomic, DNA barcoding and micro-CT imaging data. Biodivers Data J. 2013;1:e1013. Akkari N, Ganske A-S, Komerički A, Metscher B. New avatars for Myriapods: complete 3D morphology of type specimens transcends conventional species description (Myriapoda, Chilopoda). PLoS One. 2018;13(7):e0200158. https://doi.org/10.1371/journal.pone.0200158. Handschuh S, Beisser CJ, Ruthensteiner B, Metscher BD. Microscopic dual-energy CT (microDECT): a flexible tool for multichannel ex vivo 3D imaging of biological specimens. J Microsc. 2017;267:3–26. Gross V, Müller M, Hehn L, Ferstl S, Allner S, Dierolf M, et al. X-ray imaging of a water bear offers a new look at tardigrade internal anatomy. Zool Lett. 2019;5(1):14. https://doi.org/10.1186/s40851-019-0130-6. Ferstl S, Schwaha T, Ruthensteiner B, Hehn L, Allner S, Müller M, et al. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci Rep. 2020;10:1–12 Nature Publishing Group. Koch M, Edgecombe GD. The peristomatic structures of Lithobiomorpha (Myriapoda, Chilopoda): comparative morphology and phylogenetic significance. J Morphol. 2008;269(2):153–74. https://doi.org/10.1002/jmor.10578. Ganske A-S, Edgecombe GD, Akkari N. The peristomatic structures as a source of systematic characters in the genus Lithobius Leach, 1814 (Myriapoda, Chilopoda). ZooKeys. 2018;741(741):49–75. https://doi.org/10.3897/zookeys.741.21706. Jia L-P, Liang A-P. An interommatidial exocrine gland with a “nail-headed” structure in the water strider Aquarius remigis (Hemiptera, Gerridae). Arthropod Struct Dev. 2015;44(5):407–14. https://doi.org/10.1016/j.asd.2015.08.004. Tiegs OW. The post-embryonic development of Hanseniella agilis (Symphyla). Q J Microsc Sci. 1945;85:191–328. Schömann K. Das “Paarungs”-Verhalten von Polyxenus lagurus L. (Diplopoda). Naturwissenschaften. 1954;13:310. von Byern J, Müller CHG, Voigtländer K, Dorrer V, Marchetti-Deschmann M, Flammang P, et al. Examples of bioadhesives for defence and predation. In: Gorb SN, Gorb EV, editors. Funct Surgaces Biol III Divers Phys Phenom. Heidelberg: Springer; 2017. p. 141–91. Müller CHG, Rosenberg J, Hilken G. Solitary epidermal glands. In: Minelli A, editor. Treatise Zool-Anat Taxon Biol Myriapoda. Leiden: Brill; 2011. p. 70–84. Hilken G, Brockmann C, Rosenberg J. The maxillary organ gland: description of a new head gland in Scutigera coleoptrata (Chilopoda, Notostigmophora). Afr Invertebr. 2003;44:175–84. Müller CHG, Rosenberg J, Meyer-Rochow VB. Hitherto undescribed interommatidial exocrine glands in Chilopoda. Afr Invertebr. 2003;44:185–97. Juberthie-Jupeau L. Fine structure of postgonopodial glands of a myriapod Glomeris marginata (Villers). Tissue Cell. 1976;8(2):293–304. https://doi.org/10.1016/0040-8166(76)90053-7. Schlüter U. The anal glands of Rhapidostreptus virgator (Diplopoda, Spirostreptidae). Zoomorphology. 1983;102(1):79–86. https://doi.org/10.1007/BF00310734. Gowri N, Nageswaran R. An investigation on the structure and function of the sense organs in the anal legs of Geophilus subterraneous (Chilopoda: Myriapoda). Indian Zool. 1981;5:119–24. Ernst A. Die Ultrastruktur der Sinneshaare auf den Antennen von Geophilus longicornis Leach (Myriapoda, Chilopoda) I. Die Sensilla trichoidea. Zool Jahrbucher Abt Anat Ontog Tiere. 1976;96:586–604. Keil T. Sinnesorgane auf den Antennen von Lithobius forficatus L. (Myriapoda, Chilopoda). Zoomorphologie. 1976;84(1):77–102. https://doi.org/10.1007/BF02568558. Ernst A, Rosenberg J, Hilken G. Structure and distribution of antennal sensilla in the centipede Cryptops hortensis (Donovan, 1810) (Chilopoda, Scolopendromorpha). Soil Org. 2009;81:399–411. Müller CHG, Sombke A, Hilken G, Rosenberg J. Chilopoda - sense organs. In: Minelli A, editor. Treatise Zool-Anat Taxon Biol Myriapoda. Leiden: Brill; 2011. p. 235–78. Sombke A, Rosenberg J, Hilken G, Westermann M, Ernst A. The source of chilopod sensory information: external structure and distribution of antennal sensilla in Scutigera coleoptrata (Chilopoda, Scutigeromorpha). J Morphol. 2011;272(11):1376–87. https://doi.org/10.1002/jmor.10999. Ernst A, Hilken G, Rosenberg J, Voigtländer K, Sombke A. Structure and distribution of antennal sensilla in the centipede Scolopendra oraniensis (Lucas, 1846) (Chilopoda, Scolopendromorpha). Zool Anz - J Comp Zool. 2013;252(2):217–25. https://doi.org/10.1016/j.jcz.2012.06.001. Keil T. Die Antennensinnes- und Hautdrüsenorgane von Lithobius forficatus L. Eine licht- und elektronenmikroskopische Untersuchung [Inaugural-Dissertation]: Freie Universität Berlin; 1975. Ernst A. Die Ultrastruktur der Sinneshaare auf den Antennen von Geophilus longicornis Leach (Myriapoda, Chilopoda) IV. Die Sensilla microtrichodea. Zool Jahrbucher Abt Anat Ontog Tiere. 1983;109:521–46. Ernst A. Die Ultrastruktur der Sinneshaare auf den Antennen von Geophilus longicornis Leach (Myriapoda, Chilopoda) III. Die Sensilla brachyconica. Zool Jahrbucher Abt Anat Ontog Tiere. 1981;106:375–99. Ernst A. Struktur und Verbreitung verschiedener Cuticularsensillen bei Geophilus longicornis Leach (Chilopoda, Geophilomorpha:Geophilidae). Fragm Faun. 2000;43:113–29. Boxshall G. Arthropod limbs and their development. In: Minelli A, Boxshall G, Fusco G, editors. Arthropod Biol Evol. Berlin: Springer; 2013. p. 241–67. https://doi.org/10.1007/978-3-662-45798-6_11. Manton SM. The Arthropoda. Habits, functional morphology, and evolution. Oxford: Clarendon Press; 1977. Manton SM. The evolution of arthropodan locomotory mechanisms. Part 8. Functional requirements and body design in Chilopoda. J Linn Soc Lond. 1965;46:251–484. Snodgrass RE. Principles of insect morphology. New York: McGraw-Hill; 1935. Manton SM. The evolution of arthropodan locomotory mechanisms. Part 6. Habits and evolution of the Lysiopetaloidea (Diplopoda), some principles of the leg design in Diplopoda and Chilopoda, and limb structure in Diplopoda. J Linn Soc Lond. 1958;43(293):487–557. https://doi.org/10.1111/j.1096-3642.1958.tb01560.x. Verhoeff KW. Über Tracheaten-Beine. Vierter und Fünfter Aufsatz: Chilopoda und Hexapoda. Vierter Aufsatz: Chilopoden-Beine und Muskelgesetze. Nova Acta Acad Caesareae Leopoldino-Carol Ger Naturae Curiosorum. 1903;81/4:209–49. Jangi BS. The skeleto-musculatur mechanism of the so-called anal legs in the centipede Scolopendra amazonica (Scolopendridae). Ann Entomol Soc Am. 1961;54(6):861–9. https://doi.org/10.1093/aesa/54.6.861. Lewis JGE. The biology of centipedes. Cambridge, London, New York: Cambridge Univ. Press; 1981. https://doi.org/10.1017/CBO9780511565649. Fabre M. Recherches sur l’anatomie des organes reproducteurs et sur le développement des Myriapodes. Ann Sci Nat Zool Biol Anim. 1855;4 Sér:257–316. Palmén E, Rantala M. On the life-history and ecology of Pachymerium ferrugineum (C. L. Koch) (Chilopoda, Geophilidae). Ann Zool Soc Zool Bot Fenn Vanamo. 1954;16:1–44. Blower C. Epidermal glands in centipedes. Nat Lond. 1952;170(4317):166–7. https://doi.org/10.1038/170166b0. Arthur W, Johnstone J, Kettle C. Ecological and behavioural characteristics of Geophilus easoni Arthur et al. and G. carpophagus Leach. Bull Br Myriap Group. 2002;18:26–32. Rosenberg J. Bestimmungsschlüssel für mitteleuropäische Erdläufer (Geophilomorpha) anhand der Coxalporen. Acta Biol Benrodis. 1988;1:133–41. Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S. Potential and limitations of X-ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. J Comp Neurol. 2015;523(8):1281–95. https://doi.org/10.1002/cne.23741. Schulze E, Graupner H. Anleitung zum mikroskopisch-technischen Arbeiten in Biologie und Medizin. Leipzig: Akademische Verlagsgesellschaft; 1960. Sombke A, Harzsch S, Hansson BS. Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses. 2011;36(1):43–61. https://doi.org/10.1093/chemse/bjq096. Mulisch M, Welsch U. Romeis - Mikroskopische Technik. Berlin: Springer-Verlag; 2015. Karnovsky MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol. 1965;27:137–8. Limaye A. Drishti: a volume exploration and presentation tool. Dev X-Ray Tomogr VIII Proc Soc Photo-Opt Instrum Eng. 2012;8506:85060X.