When Fixed and Random Effects Mismatch: Another Case of Inflation of Evidence in Non-Maximal Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arnqvist, G. (2020). Mixed models offer no freedom from degrees of freedom. Trends in Ecology & Evolution, 35(4), 329–335. https://doi.org/10/ggkqs5
Aust, F., & Barth, M. (2020). papaja: Create APA manuscripts with R Markdown (R Package Version 0.1.0.9942).
Avetisyan, S., Lago, S., & Vasishth, S. (2020). Does case marking affect agreement attraction in comprehension? Journal of Memory and Language, 112, 104087. https://doi.org/10/ghbtpd
Azen, R., & Budescu, D. (2009). Applications of multiple regression in psychological research. The SAGE Handbook of Quantitative Methods in Psychology (pp. 285–310). SAGE Publications Ltd. https://doi.org/10.4135/9780857020994.n13
Baayen, R. H. (2010). A real experiment is a factorial experiment? The Mental Lexicon, 5(1), 149–157. https://doi.org/10/dk585r
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. https://doi.org/10/fpb5dz
Baayen, R. H., Wurm, L. H., & Aycock, J. (2007). Lexical dynamics for low-frequency complex words: A regression study across tasks and modalities. The Mental Lexicon, 2(3), 419–463. https://doi.org/10/gkzxfg
Balling, L. W. (2008). A brief introduction to regression designs and mixed-effects modelling by a recent convert. In S. Göpferich, A. L. Jakobsen, & I. M. Mees (Eds.), Looking at eyes: Eye-tracking studies of reading and translation processing (pp. 175–192). Samfundslitteratur.
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133(2), 283–316. https://doi.org/10/dx72cn
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10/gcm4wc
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2018). Parsimonious mixed models. arXiv:1506.04967
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10/gcrnkw
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. Wiley.
Bosch, S., Veríssimo, J., & Clahsen, H. (2019). Inflectional morphology in bilingual language processing: An age-of-acquisition study. Language Acquisition, 26(3), 339–360. https://doi.org/10/ggffzm
Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389–411. https://doi.org/10/gd86gx
Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42(3), 441–458. https://doi.org/10/ggb87s
Bulmer, M. (1998). Galton’s law of ancestral heredity. Heredity, 81(5), 579–585. https://doi.org/10/bgzk68
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10/gddxwp
Coupé, C. (2018). Modeling linguistic variables with regression models: Addressing non-gaussian distributions, non-independent observations, and non-linear predictors with random effects and generalized additive models for location, scale, and shape. Frontiers in Psychology, 9, 513. https://doi.org/10/gddf53
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25(1), 7–29. https://doi.org/10/5k3
Cunnings, I. (2012). An overview of mixed-effects statistical models for second language researchers. Second Language Research, 28(3), 369–382. https://doi.org/10/f35ngk
DeBruine, L. M., & Barr, D. J. (2021). Understanding mixed-effects models through data simulation. Advances in Methods and Practices in Psychological Science, 4(1), 251524592096511. https://doi.org/10/gjh9p5
Demidenko, E. (2013). Mixed models: Theory and applications with R (2nd ed.). Wiley.
Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. The Annals of Mathematical Statistics, 41(1), 214–226. https://doi.org/10/fc2nps
Friedman, L., & Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple linear regression. The American Statistician, 59(2), 127–136. https://doi.org/10/dhhxqs
Galton, F. (1897). The average contribution of each several ancestor to the total heritage of the offspring. Proceedings of the Royal Society of London, 61(369–377), 401–413. https://doi.org/10/cw8wsv
Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-19425-7
Heck, D. W. (2019). A caveat on the Savage-Dickey density ratio: The case of computing Bayes factors for regression parameters. British Journal of Mathematical and Statistical Psychology, 72(2), 316–333. https://doi.org/10/gk4zsz
Heisig, J. P., & Schaeffer, M. (2019). Why you should always include a random alope for the lower-level variable involved in a cross-level interaction. European Sociological Review, 35(2), 258–279. https://doi.org/10/gf9nkc
Hoffman, L., & Rovine, M. J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative examples. Behavior Research Methods, 39(1), 101–117. https://doi.org/10/bvnt5m
Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. J., Luck, S. J., & Gold, J. M. (2013). The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology, 27(2), 220–229. https://doi.org/10/f4sct8
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54–69. https://doi.org/10/f33f3t
Keuleers, E., & Balota, D. A. (2015). Megastudies, crowdsourcing, and large datasets in psycholinguistics: An overview of recent developments. Quarterly Journal of Experimental Psychology, 68(8), 1457–1468. https://doi.org/10/gkzxsd
Kowal, D. R. (2021). Subset selection for linear mixed models. https://doi.org/10.48550/arXiv.2107.12890
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. https://doi.org/10/gc3gmn
Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive modeling: A practical course. Cambridge University Press. OCLC: ocn861318341
Lemhöfer, K., Dijkstra, T., Schriefers, H., Baayen, R. H., Grainger, J., & Zwitserlood, P. (2008). Native language influences on word recognition in a second language: A megastudy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 12–31. https://doi.org/10/fj5krc
Linck, J. A., & Cunnings, I. (2015). The utility and application of mixed-effects models in second language research. Language Learning, 65(S1), 185–207. https://doi.org/10/f7c46d
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, R. H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10/gcx746
McNeish, D., & Kelley, K. (2019). Fixed effects models versus mixed effects models for clustered data: Reviewing the approaches, disentangling the differences, and making recommendations. Psychological Methods, 24(1), 20–35. https://doi.org/10/gdnbxn
Meteyard, L., & Davies, R. A. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language, 112, 104092. https://doi.org/10/ggjqt5
Mitchell, D. C. (1984). An evaluation of subject-paced reading tasks and other methods of investigating immediate processes in reading. In D. E. Kieras & M. A. Just (Eds.), New methods in reading comprehension research. Erlbaum.
Morey, R. D., Rouder, J. N., Verhagen, J., & Wagenmakers, E.-J. (2014). Why hypothesis tests are essential for psychological science: A comment on Cumming (2014). Psychological Science, 25(6), 1289–1290. https://doi.org/10/gckf4j
Mulder, J., & Wagenmakers, E.-J. (2016). Editors’ introduction to the special issue “Bayes factors for testing hypotheses in psychological research: Practical relevance and new developments”. Journal of Mathematical Psychology, 72, 1–5. https://doi.org/10/btqx
Mulder, J., Wagenmakers, E.-J., & Marsman, M. (2020). A generalization of the Savage-Dickey density ratio for testing equality and order constrained hypotheses. The American Statistician, 1–8. https://doi.org/10/gk4zsx
Nezlek, J. B. (2008). An introduction to multilevel modeling for social and personality psychology: Multilevel analyses. Social and Personality Psychology Compass, 2(2), 842–860. https://doi.org/10/dsn35j
Oberauer, K. (2022). The Importance of random slopes in mixed models for Bayesian hypothesis testing. Psychological Science, 33(4), 648–665. https://doi.org/10.1177/09567976211046884
O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690. https://doi.org/10/bkrhm3
O’Brien, R. M. (2018). A consistent and general modified Venn diagram approach that provides insights into regression analysis (F. Zhou, Ed.). PLoS ONE, 13(5), e0196740. https://doi.org/10/gdkkmf
Paul, D. B. (1995). Controlling human heredity: 1865 to the present. Humanities Press.
Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and prediction (3rd ed). Harcourt Brace College Publishers.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed). Sage Publications
Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (2016). Model comparison in ANOVA. Psychonomic Bulletin & Review, 23(6), 1779–1786. https://doi.org/10/f9hfb4
Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology, part IV: Parameter estimation and Bayes factors. Psychonomic Bulletin & Review, 25(1), 102–113. https://doi.org/10/gc9qfx
Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47(6), 877–903. https://doi.org/10/ggsfx9
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.org/10/b3hsdp
Schad, D. J., Betancourt, M., & Vasishth, S. (2021). Toward a principled Bayesian workflow in cognitive science. Psychological Methods, 26(1), 103–126. https://doi.org/10/ghbtt6
Schad, D. J., Nicenboim, B., Bürkner, P.-C., Betancourt, M., & Vasishth, S. (2021). Workflow techniques for the robust use of Bayes factors
Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: Overconfident estimates in mixed models. Behavioral Ecology, 20(2), 416–420. https://doi.org/10/bcwvqw
Senn, S. (2011). Francis Galton and regression to the mean. Significance, 8(3), 124–126. https://doi.org/10/gf9b83
Shantz, K. (2017). Phrase frequency, proficiency and grammaticality interact in non-native processing: Implications for theories of SLA. Second Language Research, 33(1), 91–118. https://doi.org/10/f9k8j9
Singmann, H., & Kellen, D. (2019). An introduction to mixed models for experimental psychology. In D. Spieler & E. Schumacher (Eds.), New methods in cognitive psychology (First, pp. 4–31). Routledge. https://doi.org/10.4324/9780429318405-2
Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed). Sage
Stanton, J. M. (2001). Galton, Pearson, and the peas: A brief history of linear regression for statistics instructors. Journal of Statistics Education, 9(3), 3. https://doi.org/10/gd82dx
Tomaschek, F., Hendrix, P., & Baayen, R. H. (2018). Strategies for addressing collinearity in multivariate linguistic data. Journal of Phonetics, 71, 249–267. https://doi.org/10/gg67xj
van Doorn, J., Aust, F., Haaf, J. M., Stefan, A. M., & Wagenmakers, E.-J. (2022). Bayes factors for mixed models. Computational Brain & Behavior. https://doi.org/10/gnrmn8
Vanhove, J. (2021). Collinearity isn’t a disease that needs curing. Meta-Psychology, 5. https://doi.org/10/gnrk22
Vasishth, S. (2006). On the proper treatment of spillover in real-time reading studies: Consequences for psycholinguistic theories. In: Proceedings of the international conference on linguistic evidence. Tübingen, Germany.
Veríssimo, J., & Clahsen, H. (2014). Variables and similarity in linguistic generalization: Evidence from inflectional classes in Portuguese. Journal of Memory and Language, 76, 61–79. https://doi.org/10/ggfgmd
Veríssimo, J., Heyer, V., Jacob, G., & Clahsen, H. (2018). Selective effects of age of acquisition on morphological priming: Evidence for a sensitive period. Language Acquisition, 25(3), 315–326. https://doi.org/10/ggffzk
Veríssimo, J., Verhaeghen, P., Goldman, N., Weinstein, M., & Ullman, M. T. (2021). Evidence that ageing yields improvements as well as declines across attention and executive functions. Nature Human Behaviour. https://doi.org/10/gmh3bj
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive Psychology, 60(3), 158–189. https://doi.org/10/btbnnf
Westfall, J., & Yarkoni, T. (2016). Statistically controlling for confounding constructs is harder than you think (U. S. Tran, Ed.). PLoS ONE, 11(3), e0152719. https://doi.org/10/f8wpvb
Wurm, L. H., & Fisicaro, S. A. (2014). What residualizing predictors in regression analyses does (and what it does not do). Journal of Memory and Language, 72, 37–48. https://doi.org/10/gffnjn
Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 53–79. https://doi.org/10.1037/a0024177
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10/gcmrmp