Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khi các gen B tốt hơn gen A: Mối liên hệ giữa sự nhân bản gen MADS-box lớp B và sự đa dạng hóa hình thái hoa nhụy
Tóm tắt
Các loài thực vật có hoa (hạt kín) là nhóm thực vật sống đa dạng về loài và cấu trúc nhất. Thành công trong quá trình tiến hóa này phần lớn nhờ vào những điểm mới về hình thái đặc trưng của hạt kín, chẳng hạn như hoa. Các cơ chế phân tử cho phép hoa được hình thành và đa dạng hóa vẫn chưa được biết đến, nhưng chắc chắn các thành viên cụ thể trong gia đình gen MADS-box đóng một vai trò quan trọng. Chúng mã hóa các yếu tố phiên mã thiết yếu cho nhiều quá trình phát triển, bao gồm tổ chức cấu trúc hoa trong hạt kín. Các nghiên cứu liên quan đến sự tiến hóa của gia đình gen MADS-box ở thực vật có hoa đã phát hiện ra một số sự kiện sao chép, tiếp theo là sự đa dạng chức năng của các thành viên trong gia đình gen này thuộc mô hình ABC. Theo tài liệu, một số sự kiện sao chép này liên quan đến các gen MADS-box lớp B và đã góp phần vào sự đa dạng hóa hình thái hoa của hạt kín. Trong bài tổng quan này, chúng tôi tập trung vào các ví dụ về việc sao chép gen lớp B và ý nghĩa của chúng đối với cấu trúc hoa và sự thích nghi.
Từ khóa
#thực vật có hoa #gen MADS-box #sao chép gen #đa dạng hình thái hoa #tiến hóaTài liệu tham khảo
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579
Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232
Bartlett ME, Specht CD (2010) Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytol 187:521–541
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489
Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li MA, Saedler H, Theissen G (2001) A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Gen Genomics 266:942–950
Broholm SK, Pöllänen E, Ruokolainen S, Tähtiharju S, Kotilainen M, Albert VA, Elomaa P, Teeri TH (2010) Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J Exp Bot 61:75–85
Buzgo M, Soltis PS, Soltis DE (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int J Plant Sci 165:925–947
Buzgo M, Soltis PS, Kim S, Soltis DE (2005) The making of the flower. Biologist 52:149–154
Cameron KM (2004) Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 31:1157–1180
Chanderbali AS, Yoo M-J, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albert VA, Leebens-Mack J, Altman NS, Ma H, dePamphilis CW, Soltis DE, Soltis PS (2010) Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci U S A 107:22570–22575
Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837–853
Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217
Chung YY, Kim SR, Kang HG, Noh YS, Park MC, Finkel D, An G (1995) Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci 109:45–56
Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trends Plant Sci 23:933–945
Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37
Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494
De Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, … Immink RGH (2006) A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J, 47(6):934–946. https://doi.org/10.1111/j.1365-313X.2006.02846.x
de Martino G (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell Onl 18(8):1833–1845. https://doi.org/10.1105/tpc.106.042978
Dezar CA, Tioni MF, Gonzalez DH, Chan RL (2003) Identification of three MADS-box genes expressed in sunflower capitulum. J Exp Bot 54(387):1637–1639. https://doi.org/10.1093/jxb/erg163
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940. https://doi.org/10.1016/j.cub.2004.10.028
Dornelas MC, Dornelas O (2005) From leaf to flower: revisiting Goethe’s concepts on the ¨metamorphosis¨ of plants. Braz J Plant Physiol 17:335–343
Dressler RL (1993) Phylogeny and classification of the orchid family. Timber Press inc 70:84. https://doi.org/10.1086/418905
Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18(19):5370–5379. https://doi.org/10.1093/emboj/18.19.5370
Erdmann R, Gramzow L, Melzer R, Theissen G, Becker A (2010) GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana BsisterMADS box gene ABS (TT16) that has undergone neofunctionalization. Plant J 63(6):914–924. https://doi.org/10.1111/j.1365-313X.2010.04290.x
Ferrario S, Immink RGH, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7(1):84–91. https://doi.org/10.1016/j.pbi.2003.11.003
Fornara F (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135(4):2207–2219. https://doi.org/10.1104/pp.104.045039
Galimba KD, Martínez-Gómez J, Di Stilio VS (2018) Gene duplication and transference of function in the paleoAP3 lineage of floral organ identity genes. Front Plant Sci 9:334
Geuten K, Irish V (2010) Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell 22:2562–2578
Geuten K, Viaene T, Irish VF (2011) Robustness and evolvability in the B-system of flower development. Ann Bot 107:1545–1556
Gong P, Ao X, Liu G, Cheng F, He C (2017) Duplication and whorl-specific down-regulation of the obligate AP3-PI heterodimer genes explain the origin of Paeonia lactiflora plants with spontaneous corolla mutation. Plant Cell Physiol 58:411–425
Goremykin VV, Hansmann S, Martin WF (1997) Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. Plant Syst Evol 206(1–4):337–351. https://doi.org/10.1007/BF00987956
Gramzow L, Barker E, Schulz C, Ambrose B, Ashton N, Theissen G, Litt A (2012) Selaginella genome analysis - entering the "homoplasy heaven" of the MADS world. Front Plant Sci 14:214
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER (2007) Functional diversification of B MADS-box homeotic regulators of flower development: adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24(2):465–481. https://doi.org/10.1093/molbev/msl182
Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development (Cambridge, England) 127(10):2021–2030
Immink RG, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Gen Genomics 268:598–606
Irish VF (1999) Petal and stamen development. Curr Top Dev Biol 41:133–161
Irish V (2017) The ABC model of floral development. Current Biology 27 (17):R887–R890
Kellogg EA (2001) Update on evolution evolutionary history of the grasses. Plant Physiol 125:1198–1205. https://doi.org/10.1104/pp.125.3.1198
Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. Am J Bot 91:2102–2118
Kim S, Koh J, Ma H, Hu Y, Endress PK, Hauser BA, Buzgo M, Soltis PS, Soltis DE (2005a) Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): support for the Bracteate origin of the calyptra. Int J Plant Sci 166(2):185–198. https://doi.org/10.1086/427479
Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005b) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744
Kim SY, Yun PY, Fukuda T, Ochiai T, Yokoyama J, Kameya T, Kanno A (2007) Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci 172(2):319–326. https://doi.org/10.1016/j.plantsci.2006.09.009
Kirchoff BK (1988) Inflorescence and flower development in Costus scaber (Costaceae). Can J Bot 66:339–345. https://doi.org/10.1139/b88-054
Kirchoff BK (1998) Inflorescence and flower development in the Hedychieae (Zingiberaceae): Scaphochlamys kunstleri (Baker) Holtt. Int J 159(2):261–274
Kirchoff BK, Lagomarsino LP, Newman WH, Bartlett ME, Specht CD (2009) Early floral development of Heliconia latispatha (Heliconiaceae), a key taxon for understanding the evolution of flower development in the Zingiberales. Am J Bot 96(3):580–593. https://doi.org/10.3732/ajb.0800305
Koshimizu S, Kofuji R, Sasaki-Sekimoto Y, Kikkawa M, Shimojima M, Ohta H, Shigenobu S, Kabeya Y, Hiwatashi Y, Tamada Y, Murata T, Hasebe M (2018) Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Nat Plants 4:36–45
Kramer EM, Irish VF (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161(S6):S29–S40. https://doi.org/10.1086/317576
Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149(2):765–783
Kress WJ, Prince LM, Hahn WJ, Zimmer EA (2001) Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst Biol 50(6):926–944
Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am J Bot 89(10):1682–1696. https://doi.org/10.3732/ajb.89.10.1682
Krizek B a, Meyerowitz EM (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development (Cambridge, England) 122(1):11–22
Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139(22):4180–4190
Lamb RS, Irish VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci 100(11):6558–6563
Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217(6):904–911
Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833
Mapes G, Rothwell GW (1991) Structure and relationships of primitive conifers. Neues Jahrb Geol Palaontol Abh 183:269–287
Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci 100(23):13407–13412. https://doi.org/10.1073/pnas.1835864100
Masiero S, Imbriano C, Ravasio F, Favaro R, Pelucchi N, Gorla MS, Mantovani R, Colombo L, Kater MM (2002) Ternary complex formation between MADS-box transcription factors and the histone fold protein NF-YB. J Biol Chem 277(29):26429–26435. https://doi.org/10.1074/jbc.M202546200
McCarthy EW, Mohamed A, Litt A (2015) Functional divergence of APETALA1 and FRUITFULL is due to changes in both regulation and coding sequence. Front Plant Sci 6:1076
McGonigle B, Bouhidel K, Irish VF (1996) Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev 10:1812–1821. https://doi.org/10.1101/gad.10.14.1812
Melzer R, Wang YQ, Theissen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21(1):118–128. https://doi.org/10.1016/j.semcdb.2009.11.015
Melzer R, Härter A, Rümpler F, Kim S, Soltis PS, Soltis DE, Theissen G (2014) DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Ann Bot 114:1431–1443
Mondragón-Palomino M, Theissen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13(2):51–59. https://doi.org/10.1016/j.tplants.2007.11.007
Munster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Evolution 94(March):2415–2420. https://doi.org/10.1073/pnas.94.6.2415
Münster T, Wingen LU, Faigl W, Werth S, Heinz-Saedler GT (2001) Characterization of three GLOBOSA -like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 262:1–13
Nagasawa N (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130(4):705–718. https://doi.org/10.1111/j.2041-6962.1992.tb00659.x
Nam J, DePamphilis CW, Ma H, Nei M (2003) Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20(9):1435–1447. https://doi.org/10.1093/molbev/msg152
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The transparent TESTA16 Locus Encodes the Arabidopsis Bsister MADS domain protein and is required for proper development and pigmentation of the seed coat. 14(October):2463–2479. https://doi.org/10.1105/tpc.004127.Beeckman
Pabón-Mora N, Ambrose BA, Litt A (2012) Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. Plant Physiol 158:1685–1704
Pabón-Mora N, Sharma B, Holappa LD, Kramer EM, Litt A (2013) The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development. Plant J 74:197–212
Parenicova L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell Onl 15(7):1538–1551. https://doi.org/10.1105/tpc.011544
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203. https://doi.org/10.1038/35012103
Prasad K, Ambrose BA (2010) Shaping up the fruit, (July), 899–902. https://doi.org/10.1111/j.1365-313X.2010.04139.x.www.landesbioscience.com
Prasad K, Zhang X, Tobón E, Ambrose BA (2010) The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J 62(2):203–214. https://doi.org/10.1111/j.1365-313X.2010.04139.x
Purugganan MD (1997) The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol 45:392–396. https://doi.org/10.1002/(SICI)1521-1878(199903)21:3<265::AID-BIES14>3.0.CO;2-J
Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140(1):345–356. https://doi.org/10.1016/S0169-5347(99)01816-9
Riechmann JL, Meyerowitz EM (1997) Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Mol Biol Cell 8(7):1243–1259. https://doi.org/10.1091/mbc.8.7.1243
Rijpkema AS, Royaert S, Zethof J, Weerden G, Gerats T, Vandenbussche M (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF / AP3 lineage. Gene 18:1819–1832
Roque E, Fares MA, Yenush L, Rochina MC, Wen J, Mysore KS, Gómez-Mena C, Beltrán JP, Cañas LA (2016) Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors. J Exp Bot 67:1805–1817
Rudall PJ, Bateman RM (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77:403–441
Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytol 162:25–44
Sakai S, Kawakita A, Ooi K, Inoue T (2013) Variation in the strength of association among pollination systems and floral traits: evolutionary changes in the floral traits of Bornean gingers (Zingiberaceae). Am J Bot 100(3):546–555. https://doi.org/10.3732/ajb.1200359
Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between Rice and wheat provide new insight into grass genome evolution. Plant Cell Onl 20(1):11–24. https://doi.org/10.1105/tpc.107.056309
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250(4983):931–936. https://doi.org/10.1126/science.250.4983.931
Shulga OA, Shchennikova AV, Angenent GC, Skryabin KG (2008) MADS-box genes controlling inflorescence morphogenesis in sunflower. Russ J Dev Biol 39(1):2–5. https://doi.org/10.1007/s11174-008-1002-8
Smyth DR (2018) Evolution and genetic control of the floral ground plan. New Phytol 220:70–86
Soltis PS, Soltis DE (2004) The origin and diversification of angiosperms. Am J Bot 91(10):1614–1626. https://doi.org/10.3732/ajb.91.10.1614
Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M (2006) Expression of floral regulators in basal angiosperms and the origin and evolution of ABC function. Adv Bot Res 44:483–506. https://doi.org/10.1016/S0065-2296(06)44012-X
Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12(8):358–367. https://doi.org/10.1016/j.tplants.2007.06.012
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348. https://doi.org/10.3732/ajb.0800079
Stellari GM, Jaramillo MA, Kramer EM (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21:506–519
Sundström J, Engström P (2002) Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant J 31(2):161–169. https://doi.org/10.1046/j.1365-313X.2002.01343.x
Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4(1):75–85. https://doi.org/10.1016/S1369-5266(00)00139-4
Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Annals of Botany 100 (3):603–619
Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43(5):484–516. https://doi.org/10.1007/BF02337521
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, … Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol, 42(1):115–49. https://doi.org/10.1023/A:1006332105728
Theissen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271
Tomlinson PB (1961) Phylogeny of the Scitamineae-Morphological and Anatomical Considerations. 16(2):192–213
Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W., …, Schwarz-sommer, Z. (1992). GLOBOSA: a homeotic gene which interacts with DEFICIENS organogenesis in the control of Antirrhinum floral organogenesis. The EMBO Journal
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WM, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125–1139
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741–754
Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009) Pistillata - DUplications as a mode for floral diversification in (basal) Asterids. Mol Biol Evol 26:2627–2645
Wei RX, Ge S (2011) Evolutionary history and complementary selective relaxation of the duplicated PI Genes in grasses. J Integr Plant Biol 53 (8):682–693
Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc Natl Acad Sci U S A 104:1081–1086
Winter K, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587–596
Xu Y, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes of the orchid Dendrobium crumenatum. Plant J 46:54–68
Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176:283–294
Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K (2009) Class D and B sister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat ( Triticum aestivum L .). Plant Mol Biol 71:1–14
Yao SG, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49:853–857
Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62
Yu J et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38
Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G (2005) To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Heredity 96:225–240