When Are Quantum Systems Operationally Independent?

Springer Science and Business Media LLC - Tập 49 - Trang 3250-3261 - 2009
Stephen J. Summers1, Miklós Rédei2
1Department of Mathematics, University of Florida, Gainesville, USA
2Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, London, UK

Tóm tắt

We propose some formulations of the notion of “operational independence” of two subsystems S 1,S 2 of a larger quantum system S and clarify their relation to other independence concepts in the literature. In addition, we indicate why the operational independence of quantum subsystems holds quite generally, both in nonrelativistic and relativistic quantum theory.

Tài liệu tham khảo

Araki, H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999) Arveson, W.: Subalgebras of C*-algebras. Acta Math. 123, 141–224 (1969) Blackadar, B.: Operator Algebras: Theory of C*-Algebras and von Neumann Algebras. Springer, Berlin (2005) Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974) Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986) Buchholz, D., Doplicher, S., Longo, R.: On Noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986) Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123–135 (1987) Buchholz, D., Junglas, P.: On the existence of equilibrium states in local quantum field theory. Commun. Math. Phys. 121, 255–270 (1989) Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976) D’Antoni, C., Longo, R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983) Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Inv. Math. 75, 493–536 (1984) Effros, E.G., Lance, E.C.: Tensor products of operator algebras. Adv. Math. 25, 1–34 (1977) Florig, M., Summers, S.J.: On the statistical independence of algebras of observables. J. Math. Phys. 38, 1318–1328 (1997) Fredenhagen, K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 97, 79–89 (1985) Haag, R.: Local Quantum Physics. Springer, Berlin (1992) Hamhalter, J.: Private communication Hamhalter, J.: Quantum Measure Theory. Kluwer Academic, Dordrecht (2003) Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Academic Press, Orlando (1983) Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. II. Academic Press, Orlando (1986) Kraus, K.: States, Effects and Operations. Lecture Notes in Physics, vol. 190. Springer, Berlin (1983) Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic, Dordrecht (1997) Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38, 390–417 (2007) Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys. 16, 238–246 (1970) Stinespring, W.F.: Positive functions on C *-algebras. Proc. AMS 6, 211–216 (1955) Summers, S.J.: Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys. 86, 111–141 (1982) Summers, S.J., Werner, R.: Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. Henri Poincaré, Phys. Théor. 49, 215–243 (1988) Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990) Summers, S.J.: Subsystems and independence in relativistic quantum theory. Stud. Hist. Philos. Mod. Phys. 40, 133–141 (2009) Takesaki, M.: On the direct product of W *-factors. Tôhoku Math. J. 10, 116–119 (1958) Takesaki, M.: Theory of Operator Algebras, vol. I. Springer, Berlin (1979) Takesaki, M.: Theory of Operator Algebras, vol. II. Springer, Berlin (2003) Takesaki, M.: Theory of Operator Algebras, vol. III. Springer, Berlin (2003) Werner, R.: Local preparability of states and the split property in quantum field theory. Lett. Math. Phys. 13, 325–329 (1987)