What we learn from extremophiles

Carola Schröder1, Christin Burkhardt1, Garabed Antranikian1
1Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany

Tóm tắt

AbstractExtremophiles are microorganisms that love extreme conditions, such as high temperatures up to the boiling point of water or low temperatures down to below the freezing point. Moreover, some extreme microbes prefer to live in acidic or alkaline environments, under high pressure or high salinity. Three extremophilic species are presented in this article: Lacinutrix algicola, a psychrophilic bacterium that grows at temperatures between 0 and 25 °C, Anaerobranca gottschalkii, a thermophilic and alkaliphilic bacterium growing optimally at 50–55 °C under alkaline conditions, and Pyrococcus furiosus, a famous hyperthermophilic archaeon that prefers 100 °C for growth. These extraordinary microorganisms are examples of extremophiles that possess remarkable adaptation mechanisms and additionally produce unique enzymes called extremozymes. These robust biocatalysts can be applied in various biotechnologic processes to enable substrate conversions under extreme process conditions. Due to their unusual properties, extremophiles and extremozymes will play a pivotal role in the development of modern circular bioeconomy.

Từ khóa


Tài liệu tham khảo

Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486. https://doi.org/10.1099/ijs.0.63527-0

Coker JA (2016) Extremophiles and biotechnology: current uses and prospects. F1000Research 5:396. https://doi.org/10.12688/f1000research.7432.1

DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing-radiation DNA damage at 95 °C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645. https://doi.org/10.1128/jb.179.14.4643-4645.1997

Elleuche S, Schröder C, Stahlberg N, Antranikian G (2017) “Boiling water is not too hot for us!”—preferred living spaces of heat-loving microbes. Front Young Minds 5:1. https://doi.org/10.3389/frym.2017.00001

Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123. https://doi.org/10.1016/j.copbio.2014.04.003

Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45(3):454–461. https://doi.org/10.1099/00207713-45-3-454

Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov., represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61. https://doi.org/10.1007/BF00413027

Forterre P (2009) Strategies of hyperthermophiles in nucleic acids adaptation to high temperature. In: Extremophiles—volume I. EOLSS Publishers/UNESCO, ISBN 978-I-84826-933-4

Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakarensis KD1 and comparison with Pyrococcus genomes. Genome Res 15(3):352–363. https://doi.org/10.1101/gr.3003105

Han-Woo K, Ishikara K (2010) Complete saccharification of cellulose at high temperature using endocellulase and β-glucosidase from Pyrococcus sp. J Microbiol Biotechnol 20(5):889–892

Jamieson AJ, Fujii T, Mayor DJ, Solan M, Proede IG (2010) Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol 25(3):190–197. https://doi.org/10.1016/j.tree.2009.09.009

Kengen SWM (2017) Pyrococcus furiosus, 30 years on. Microb Biotechnol 10(6):1441–1444. https://doi.org/10.1111/1751-7915.12695

Konings WN, Albers S-V, Koning SM, Driessen AJM (2009) Survival strategies and membrane properties of extremophiles. In Extremophiles—volume I. EOLSS Publishers/UNESCO, ISBN 978-I-84826-933-4

Krüger A, Schäfers C, Schröder C, Antranikian G (2018) Towards a sustainable biobased industry—highlighting the impact of extremophiles. N Biotechnol 40(Pt A):144–153. https://doi.org/10.1016/j.nbt.2017.05.002

Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles: a review. Extremophiles 8:1–11. https://doi.org/10.1007/s00792-003-0362-3

Nedashkovskaya OI, Kwon KK, Yang SH, Lee HS, Chung KH, Kim SJ (2008) Lacinutrix algicola sp nov and Lacinutrix mariniflava sp. nov., two novel marine alga-associated bacteria and emended description of the genus Lacinutrix. Int J Syst Evol Microbiol 58(12):2694–2698. https://doi.org/10.1099/ijs.0.65799-0

Olsen HS, Farholt P (1998) The role of enzymes in modern detergency. J Surfactants Deterg 1(4):555–567. https://doi.org/10.1007/s11743-998-0058-7

Prowe S, Antranikian G (2001) Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int J Syst Evol Microbiol 51:457–465. https://doi.org/10.1099/00207713-51-2-457

Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485. https://doi.org/10.3390/life3030482

Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptation in archaeal extremophiles. Archaea 2013:373275. https://doi.org/10.1155/2013/373275

Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101. https://doi.org/10.1038/35059215

Rothschild LJ (2002) Life in extreme environments. Ad Astra 14(1):32

Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124. https://doi.org/10.1111/j.1574-6968.1990.tb04089.x

Stetter KO (1998) Hyperthermophiles and their possible role as ancestors of modern life (Chapter 15). In: The molecular origins of life. Cambridge University Press. ISBN 0521564123

Wang H-C, Susko E, Roger AJ (2006) On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and cofounding factors. Biochem Biophys Res Commun 342(3):681–684. https://doi.org/10.1016/j.bbrc.2006.02.037

Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. PNAS 111(12):4461–4465. https://doi.org/10.1073/pnas.1322003111