What specific plant traits support ecosystem services such as pollination, bio-control and water quality protection in temperate climates? A systematic map

Springer Science and Business Media LLC - Tập 7 - Trang 1-13 - 2018
Claire J. Cresswell1, Heidi M. Cunningham2, Andrew Wilcox1, Nicola P. Randall1
1Harper Adams University, Shropshire, UK
2Syngenta Jealott′s Hill International Research Centre, Berkshire, UK

Tóm tắt

Agricultural intensification has contributed to increased diffuse source pollution within water catchments, reduced heterogeneity within the landscape and caused major declines in farmland wildlife. This decrease in biodiversity has been shown to decrease vital ecosystem services such as pollination, biological pest control (bio-control) and water quality protection. The morphological traits of plant species, such as floral display size and leaf area, provide support to these services and vegetative strips can be established with plants that have these desirable traits to try and restore ecosystem service support to farmland. Vegetative strips are widely used across the world, especially in Europe, however, there is a need to increase their functionality due to issues of land availability and food security. To do this, combinations of plant species that will support specific ecosystem services, have been developed. However, to enable a fully-informed development process, evidence must be collated on which specific plant traits provide the support to the target ecosystem services. The primary objective of this study was to systematically map all evidence for specific plant traits that may provide support for pollinators, bio-control and water quality protection in temperate climates. Both published and grey literature were obtained through databases and NGO websites using key search terms. An initial 34,077 articles were identified with a total of 11,705 individual articles, after duplicates were removed. These were screened for inclusion based on criteria such as subject, climate and language. Each article was coded into a Microsoft Access database using generic (e.g. author, publication date, study length) and topic specific (e.g. target system, organism and ecosystem service) keywords. After screening 56 articles were coded into the systematic map. A total of 40 articles identified 37 plant traits for pollinator support, seven identified eight traits for bio-control and nine identified 26 for water quality protection. All articles were published between 1983 and 2017 and they included studies that were undertaken in 22 different countries. This systematic mapping process produced a searchable database of literature available on plant traits and the target ecosystem services. It has highlighted that more research has been conducted on plant traits for pollinator support than for bio-control and water quality protection, identifying potential research gaps in these areas. Evidence presented in this map could inform decisions related to the suitability of plant species for inclusion within multifunctional vegetative strips, providing targeted ecosystem services. This information could be used by policy makers to develop an option that could benefit landowners and farmland wildlife concurrently.

Tài liệu tham khảo

Robinson RA, Sutherland WJ. Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol. 2002;39:157–76. Ehrlich PR, Ehrlich AH. Can a collapse of global civilization be avoided? Proc R Soc B. 2013;280:20122845. Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003;18:182–8. Donald PF, Green RF, Heath MF. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc B. 2001;268:25–9. Flowerdew JR. Mammal biodiversity in agricultural habitats. In: Kirkwood RC, editor. Biodiversity and conservation in agriculture: proceedings of an international symposium organised by the British Crop Protection Council. 1997. p. 25–40. Sotherton NW, Self MJ. Changes in plant and arthropod diversity on lowland farmland: an overview. In: Aebischer NJ, Evans AD, Grice PV, Vickery JA, editors. The ecology and conservation of lowland farmland birds. Oxford: Blackwell Scientific Publications; 2000. p. 26–35. Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci. 2010;107:1443–6. Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature. 2007;448:188–90. Tilman D, Reich PB, Knops JM. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature. 2006;441:629–32. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science. 2006;313:351–4. Kevan PG, Phillips TP. The economic impacts of pollinator declines: an approach to assessing the consequences. Conserv Ecol. 2001;5:8. Kremen C, Williams NM, Thorp RW. Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA. 2002;99:16812–6. Garratt MP, Truslove CL, Coston DJ, Evans RL, Moss ED, Dodson C, Jenner N, Biesmeijer JC, Potts SG. Pollination deficits in UK apple orchards. J Pollinat Ecol. 2014;12:9–14. Kuivila KM, Foe CG. Concentrations, transport and biological effects of dormant spray pesticides in the San Francisco Estuary, California. Environ Toxicol Chem. 1995;14:1141–50. Thorburn PJ, Biggs JS, Weier KL, Keating BA. Nitrate in ground waters of intensive agricultural areas in coastal Northeastern Australia. Agric Ecosyst Environ. 2003;94:49–58. Tang W, Zhang H, Zhang W, Shan B, Zhu X, Song Z. Dynamics of heavy metals and phosphorus in the pore water of estuarine sediments following agricultural intensification in Chao Lake Valley. Environ Sci Pollut Res. 2015;22:7948–53. Reichenberger S, Bach M, Skitschak A, Frede H-G. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review. Sci Total Environ. 2007;384:1–35. Green MB, LeBaron HM, Moberg WK. Managing resistance to agrochemicals: from fundamental research to practical strategies. Washington: American Chemical Society; 1990. Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pest Biochem Physiol. 2015;121:78–87. Whalon ME, Mota-Sanchez D, Hollingworth RM. Analysis of global pesticide resistance in arthropods. In: Whalon ME, Mota-Sanchez D, Hollingworth RM, editors. Global pesticide resistance in arthropods. Oxfordshire: CABI International; 2008. p. 5–31. Fiedler AK, Landis DA, Wratten SD. Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Control. 2008;45:254–71. Gurr G, Wratten S, Barbosa P. Success in conservation biological control of arthropods. In: Gurr G, Wratten S, editors. Biological control: measures of success. Berlin: Springer; 2010. p. 105–32. Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ. 2016;221:198–204. Bommarco R, Kleijn D, Potts SG. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol. 2013;28:230–8. Kattge J, Diaz S, Lavorel S, Prentice I, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright I. TRY—a global database of plant traits. Glob Change Biol. 2011;17:2905–35. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci. 2007;104:20684–9. Garnier E, Navas ML. A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron Sustain Dev. 2012;32:365–99. Bianchi F, Wackers FL. Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control. 2008;46:400–8. Kudo G, Ishii HS, Hirabayashi Y, Ida TY. A test of the effect of floral color change on pollination effectiveness using artificial inflorescences visited by bumblebees. Oecologia. 2007;154:119–28. Burylo M, Dutoit T, Rey F. Species traits as practical tools for ecological restoration of marly eroded lands. Restor Ecol. 2014;22:633–40. Hackett M, Lawrence A. Multifunctional role of field margins in arable farming. European Crop Protection Association, Cambridge Environmental Assessments, ADAS UK Ltd. 2014. http://www.ecpa.eu/sites/default/files/Field%20Margins%20Arable%20Farming_V02%20(1).pdf. Accessed 25 Apr 2017. European commission: environment—The Habitats Directive. 2016. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm. Accessed 25 Apr 2017. European commission: environment—Introduction to the new EU Water Framework Directive. 2016. http://ec.europa.eu/environment/water/water-framework/info/intro_en.htm. Accessed 25 Apr 2017. European commission: agriculture and biodiversity. 2017. http://ec.europa.eu/agriculture/envir/biodiv/index_en.htm. Accessed 25 Apr 2017. European commission: agriculture and water. 2017. http://ec.europa.eu/agriculture/envir/water/index_en.htm. Accessed 25 Apr 2017. European commission: agriculture and pesticides. 2017. http://ec.europa.eu/agriculture/envir/pesticides/index_en.htm. Accessed 25 Apr 2017. European commission: soil and agriculture. 2017. http://ec.europa.eu/agriculture/envir/pesticides/index_en.htm. Accessed 25 Apr 2017. Batáry P, Dicks LV, Kleijn D, Sutherland WJ. The role of agri-environment schemes in conservation and environmental management. Conserv Biol. 2015;29:1006–16. United Nations, Department of Economic and Social Affairs, population division: World population prospects, the 2015 Revision. 2015. http://esa.un.org/unpd/wpp/DataQuery/. Accessed 25 Apr 2017. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–8. Garnett T, Godfray C. Sustainable intensification in agriculture. Navigating a course through competing food system priorities. Food Climate Research Network and the Oxford Martin Programme on the Future of Food. 2012. http://futureoffood.ox.ac.uk/sites/futureoffood.ox.ac.uk/files/SI%20report%20-%20final.pdf. Accessed 25 Apr 2017. Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M. Sustainable intensification in agriculture: premises and policies. Science. 2013;341:33–4. Tittonell P. Ecological intensification of agriculture—sustainable by nature. Curr Opin Environ Sustain. 2014;8:53–61. Stutter MI, Chardon WJ, Kronvang B. Riparian buffer strips as a multifunctional management tool in agricultural landscapes. J Environ Qual. 2012;41:297–303. Syngenta. Grower’s guidelines. Operation pollinator: multifunctional landscapes. 2014. Ecostac. Optimising ecosystem services in terms of agronomy and conservation. 2009. http://www.lancaster.ac.uk/lec/sites/ecostac/seed_selection.php. Accessed 25 Apr 2017. Randall NP, Donnison LM, Lewis PJ, James KL. How effective are on-farm mitigation measures for delivering an improved water environment? A systematic map. Environ Evid. 2015;27(4):18. Randall NP, James KL. The effectiveness of integrated farm management, organic farming and agri-environment schemes for conserving biodiversity in temperate Europe—a systematic map. Environ Evid. 2012;1:4. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen–Geiger climate classification updated. Meteorol Z. 2006;15:259–63. Collaboration for Environmental Evidence: Guidelines for systematic review in environmental management. Version 4.2. 2013. http://www.environmentalevidence.org/wp-content/uploads/2017/01/Review-guidelines-version-4.2-final-update.pdf. Accessed 25 Apr 2017. Blowers CJ, Cunningham HM, Wilcox A, Randall NP. What specific plant traits support ecosystem services such as pollination, bio-control and water quality protection in temperate climates? A systematic map protocol. Environ Evid. 2017;6:3. Stevens A, Milne R. The effectiveness revolution and public health. In: Scalley G, editor. Progress in public health. London: Royal Society for Medicine Press; 1997. p. 197–225. Pullin AS, Knight TM. Effectiveness in conservation practice: pointers from medicine and public health. Conserv Biol. 2001;15:50–4. Haddaway NR, Styles D, Pullin AS. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environ Evid. 2014;3:17. Nicolson SW, Wright GA. Plant–pollinator interactions and threats to pollination: perspectives from the flower to the landscape. Funct Ecol. 2017;31:22–5. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.