What is the mitochondrial permeability transition pore?

Journal of Molecular and Cellular Cardiology - Tập 46 Số 6 - Trang 821-831 - 2009
Andrew P. Halestrap1
1Department of Biochemistry and Bristol Heart Institute, University of Bristol, School of Medical Sciences, University Walk, Bristol, UK.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Crofts, 1965, Calcium ion accumulation and volume changes of isolated liver mitochondria: reversal of calcium ion-induced swelling, Biochem. J., 95, 387, 10.1042/bj0950387

Chappell, 1965, Calcium ion accumulation and volume changes of isolated liver mitochondria: calcium ion-induced swelling, Biochem. J., 95, 378, 10.1042/bj0950378

Gunter, 1990, Mechanisms by which mitochondria transport calcium, Am. J. Physiol., 258, C755, 10.1152/ajpcell.1990.258.5.C755

Haworth, 1979, The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site, Arch. Biochem. Biophys., 195, 460, 10.1016/0003-9861(79)90372-2

Hunter, 1979, The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms, Arch. Biochem. Biophys., 195, 453, 10.1016/0003-9861(79)90371-0

Crompton, 1987, Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria, Biochem. J., 245, 915, 10.1042/bj2450915

Halestrap, 1998, Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart, Biochim. Biophys. Acta, 1366, 79, 10.1016/S0005-2728(98)00122-4

Halestrap, 2004, Mitochondrial permeability transition pore opening during myocardial reperfusion — a target for cardioprotection, Cardiovasc. Res., 61, 372, 10.1016/S0008-6363(03)00533-9

Halestrap, 2009, The role of the mitochondrial permeability transition pore in heart disease, Biochim. Biophys. Acta, 10.1016/j.bbabio.2008.12.017

Bernardi, 1999, Mitochondrial transport of cations: channels, exchangers, and permeability transition, Physiol. Rev., 79, 1127, 10.1152/physrev.1999.79.4.1127

Halestrap, 1982, The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals, Biochem. J., 204, 37, 10.1042/bj2040037

Petronilli, 1994, Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A, Biochim. Biophys. Acta, 1187, 255, 10.1016/0005-2728(94)90122-8

Doran, 2000, Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites, Biochem. J., 348, 343, 10.1042/bj3480343

Crompton, 2002, Mitochondrial intermembrane junctional complexes and their involvement in cell death, Biochimie, 84, 143, 10.1016/S0300-9084(02)01368-8

Martinou, 2001, Breaking the mitochondrial barrier, Nat. Rev., Mol. Cell Biol., 2, 63, 10.1038/35048069

Green, 2004, The pathophysiology of mitochondrial cell death, Science, 305, 626, 10.1126/science.1099320

Crompton, 1988, Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload, Eur. J. Biochem., 178, 489, 10.1111/j.1432-1033.1988.tb14475.x

Nazareth, 1991, Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A, J. Mol. Cell. Cardiol., 23, 1351, 10.1016/0022-2828(91)90181-K

Leyssens, 1996, The relationship between mitochondrial state, ATP hydrolysis, [Mg2+], and [Ca2+](i) studied in isolated rat cardiomyocytes, J. Physiol., 496, 111, 10.1113/jphysiol.1996.sp021669

Griffiths, 1993, Protection by cyclosporin A of ischemia reperfusion-induced damage in isolated rat hearts, J. Mol. Cell. Cardiol., 25, 1461, 10.1006/jmcc.1993.1162

Griffiths, 1995, Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion, Biochem. J., 307, 93, 10.1042/bj3070093

DiLisa, 2006, Mitochondria and ischemia–reperfusion injury of the heart: fixing a hole, Cardiovasc. Res., 70, 191, 10.1016/j.cardiores.2006.01.016

Yellon, 2007, Myocardial reperfusion injury, N. Engl. J. Med., 357, 1121, 10.1056/NEJMra071667

Halestrap, 2007, The role of mitochondria in protection of the heart by preconditioning, Biochim. Biophys. Acta, 1767, 1007, 10.1016/j.bbabio.2007.05.008

Halestrap, 2005, A pore way to die, Nature, 434, 578, 10.1038/434578a

Nakagawa, 2005, Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, 434, 652, 10.1038/nature03317

Baines, 2005, Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, 434, 658, 10.1038/nature03434

Schinzel, 2005, Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proc. Natl. Acad. Sci. U. S. A., 102, 12005, 10.1073/pnas.0505294102

Luvisetto, 2008, Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D, Neuroscience, 155, 585, 10.1016/j.neuroscience.2008.06.030

Rodriguez Enriquez, 2004, Role of mitochondrial permeability transition pores in mitochondrial autophagy, Int. J. Biochem. Cell Biol., 36, 2463, 10.1016/j.biocel.2004.04.009

Clarke, 2002, Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A, J. Biol. Chem., 277, 34793, 10.1074/jbc.M202191200

Hausenloy, 2003, Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury, Cardiovasc. Res., 60, 617, 10.1016/j.cardiores.2003.09.025

Argaud, 2005, Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury, J. Mol. Cell. Cardiol., 38, 367, 10.1016/j.yjmcc.2004.12.001

Javadov, 2003, Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart, J. Physiol., 549, 513, 10.1113/jphysiol.2003.034231

Gateau Roesch, 2006, Mitochondrial permeability transition pore and postconditioning, Cardiovasc. Res., 70, 264, 10.1016/j.cardiores.2006.02.024

Khaliulin, 2007, Temperature preconditioning of isolated rat hearts — a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore, J. Physiol., 581, 1147, 10.1113/jphysiol.2007.130369

Townsend, 2007, Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly, by reducing oxidative stress, Am. J. Physiol., 293, H928

Javadov, 2008, NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition, Cardiovasc. Res., 77, 416, 10.1093/cvr/cvm039

Kerr, 1999, Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate, Am. J. Physiol., 276, H496

Javadov, 2000, Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition, Cardiovasc. Res., 45, 360, 10.1016/S0008-6363(99)00365-X

Adlam, 2005, Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury, FASEB J., 19, 1088, 10.1096/fj.05-3718com

Piot, 2008, Effect of cyclosporine on reperfusion injury in acute myocardial infarction, N. Engl. J. Med., 359, 473, 10.1056/NEJMoa071142

Halestrap, 1997, Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury, Mol. Cell. Biochem., 174, 167, 10.1023/A:1006879618176

Basso, 2005, Properties of the permeability transition pore in mitochondria devoid of cyclophilin D, J. Biol. Chem., 280, 18558, 10.1074/jbc.C500089200

Crompton, 1990, A heart mitochondrial Ca2+-dependent pore of possible relevance to re-perfusion-induced injury — evidence that ADP facilitates pore interconversion between the closed and open states, Biochem. J., 266, 33, 10.1042/bj2660033

Connern, 1996, Chaotropic agents and increased matrix volume enhance binding of mitochondrial cyclophilin to the inner mitochondrial membrane and sensitize the mitochondrial permeability transition to [Ca2+], Biochemistry, 35, 8172, 10.1021/bi9525177

Halestrap, 1997, Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase, J. Biol. Chem., 272, 3346, 10.1074/jbc.272.6.3346

Kim, 2006, Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia–reperfusion, Am. J. Physiol., Heart Circ. Physiol., 290, H2024, 10.1152/ajpheart.00683.2005

Juhaszova, 2008, The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown, Ann. N.Y. Acad. Sci., 1123, 197, 10.1196/annals.1420.023

Bernardi, 1992, Modulation of the mitochondrial permeability transition pore — effect of protons and divalent cations, J. Biol. Chem., 267, 2934, 10.1016/S0021-9258(19)50676-7

Novgorodov, 1994, Magnesium ion modulates the sensitivity of the mitochondrial permeability transition pore to cyclosporin A and ADP, Arch. Biochem. Biophys., 311, 219, 10.1006/abbi.1994.1230

Halestrap, 1991, Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7 — implications for the protective effect of low pH against chemical and hypoxic cell damage, Biochem. J., 278, 715, 10.1042/bj2780715

Szabo, 1992, Modulation of the mitochondrial megachannel by divalent cations and protons, J. Biol. Chem., 267, 2940, 10.1016/S0021-9258(19)50677-9

Gunter, 2000, Mitochondrial calcium transport: mechanisms and functions, Cell Calcium, 28, 285, 10.1054/ceca.2000.0168

Szabo, 1991, The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin-A, J. Biol. Chem., 266, 3376, 10.1016/S0021-9258(19)67802-6

Zoratti, 1994, Electrophysiology of the inner mitochondrial membrane, J. Bioenerg. Biomembr., 26, 543, 10.1007/BF00762739

Lohret, 1996, Activity of the mitochondrial multiple conductance channel is independent of the adenine nucleotide translocator, J. Biol. Chem., 271, 4846, 10.1074/jbc.271.9.4846

Ichas, 1998, From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state, Biochim. Biophys. Acta, 1366, 33, 10.1016/S0005-2728(98)00119-4

Ichas, 1997, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals, Cell, 89, 1145, 10.1016/S0092-8674(00)80301-3

Bernardi, 1999, Mitochondria and cell death — mechanistic aspects and methodological issues, Eur. J. Biochem., 264, 687, 10.1046/j.1432-1327.1999.00725.x

Petronilli, 1999, Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence, Biophys. J., 76, 725, 10.1016/S0006-3495(99)77239-5

Halestrap, 2002, The permeability transition pore complex: another view, Biochimie, 84, 153, 10.1016/S0300-9084(02)01375-5

Bernardi, 1993, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore .1. Evidence for 2 separate Me2+ binding sites with opposing effects on the pore open probability, J. Biol. Chem., 268, 1005, 10.1016/S0021-9258(18)54033-3

Halestrap, 2002, The mitochondrial permeability transition — a pore way for the heart to die, J. Clin. Basic Cardiol., 5, 29

Petronilli, 1993, Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore .2. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+, J. Biol. Chem., 268, 1011, 10.1016/S0021-9258(18)54034-5

Bernardi, 1992, Modulation of the mitochondrial cyclosporin-A-sensitive permeability transition pore by the proton electrochemical gradient — evidence that the pore can be opened by membrane depolarization, J. Biol. Chem., 267, 8834, 10.1016/S0021-9258(19)50355-6

Basso, 2008, Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation, J. Biol. Chem., 283, 26307, 10.1074/jbc.C800132200

Leung, 2008, The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition, J. Biol. Chem., 283, 26312, 10.1074/jbc.M805235200

Halestrap, 1990, Biochem. J., 268, 153, 10.1042/bj2680153

Novgorodov, 1991, The nonspecific inner membrane pore of liver mitochondria — modulation of cyclosporin sensitivity by ADP at carboxyatractyloside-sensitive and insensitive sites, Biochem. Biophys. Res. Commun., 180, 33, 10.1016/S0006-291X(05)81250-1

Haworth, 2000, Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria, J. Bioenerg. Biomembr., 32, 91, 10.1023/A:1005568630151

Klingenberg, 2008, The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978, 10.1016/j.bbamem.2008.04.011

Halestrap, 2003, The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death, Curr. Med. Chem., 10, 1507, 10.2174/0929867033457278

Beatrice, 1984, The role of glutathione in the retention of Ca2+ by liver mitochondria, J. Biol. Chem., 259, 1279, 10.1016/S0021-9258(17)43600-3

Lenartowicz, 1991, Phenylarsine oxide induces the cyclosporin-A-sensitive membrane permeability transition in rat liver mitochondria, J. Bioenerg. Biomembr., 23, 679, 10.1007/BF00785817

McStay, 2002, Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore, Biochem. J., 367, 541, 10.1042/bj20011672

Petronilli, 1993, Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria, J. Biol. Chem., 268, 21939, 10.1016/S0021-9258(20)80631-0

Petronilli, 1994, The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols — increase of the gating potential by oxidants and its reversal by reducing agents, J. Biol. Chem., 269, 16638, 10.1016/S0021-9258(19)89437-1

DiLisa, 1999, Negative contrast imaging of mitochondria by confocal microscopy — response to J. J. Lemasters et al, Biophys. J., 77, 1749

Costantini, 1996, Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites, J. Biol. Chem., 271, 6746, 10.1074/jbc.271.12.6746

Chernyak, 1996, The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites, Eur. J. Biochem., 238, 623, 10.1111/j.1432-1033.1996.0623w.x

Rigobello, 1995, Inhibition of rat liver mitochondrial permeability transition by respiratory substrates, Arch. Biochem. Biophys., 319, 225, 10.1006/abbi.1995.1286

Bindoli, 1997, Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition, Arch. Biochem. Biophys., 342, 22, 10.1006/abbi.1997.9986

Salet, 1997, Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore, J. Biol. Chem., 272, 21938, 10.1074/jbc.272.35.21938

Wudarczyk, 1996, Relation between the activities reducing disulfides and the protection against membrane permeability transition in rat liver mitochondria, Arch. Biochem. Biophys., 327, 215, 10.1006/abbi.1996.0112

Broekemeier, 1995, Inhibition of the mitochondrial permeability transition by cyclosporin a during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases, Biochemistry, 34, 16440, 10.1021/bi00050a027

Krämer, 1983, Interaction of membrane surface charges with the reconstituted ADP/ATP-carrier from mitochondria, Biochim. Biophys. Acta, 735, 145, 10.1016/0005-2736(83)90270-5

Fontaine, 1998, A ubiquinone-binding site regulates the mitochondrial permeability transition pore, J. Biol. Chem., 273, 25734, 10.1074/jbc.273.40.25734

Fontaine, 1999, Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs, J. Bioenerg. Biomembr., 31, 335, 10.1023/A:1005475802350

Walter, 2000, Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site, J. Biol. Chem., 275, 29521, 10.1074/jbc.M004128200

Fontaine, 1998, Regulation of the permeability transition pore in skeletal muscle mitochondria — modulation by electron flow through the respiratory chain complex, J. Biol. Chem., 273, 12662, 10.1074/jbc.273.20.12662

Crompton, 1999, The mitochondrial permeability transition pore and its role in cell death, Biochem. J., 341, 233, 10.1042/bj3410233

Halestrap, 2006, Calcium, mitochondria and reperfusion injury: a pore way to die, Biochem. Soc. Trans., 34, 232, 10.1042/BST0340232

Leung, 2008, Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore, Biochim. Biophys. Acta, 1777, 946, 10.1016/j.bbabio.2008.03.009

Crompton, 1988, Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress, Biochem. J., 255, 357

Connern, 1992, Purification and N-terminal sequencing of peptidyl-prolyl cis–trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin, Biochem. J., 284, 381, 10.1042/bj2840381

Tanveer, 1996, Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress, Eur. J. Biochem., 238, 166, 10.1111/j.1432-1033.1996.0166q.x

Johnson, 1999, Import and processing of heart mitochondrial cyclophilin D, Eur. J. Biochem., 263, 353, 10.1046/j.1432-1327.1999.00490.x

Schreiber, 1992, The mechanism of action of cyclosporin-A and FK506, Immunol. Today, 13, 136, 10.1016/0167-5699(92)90111-J

Rusnak, 2000, Calcineurin: form and function, Physiol. Rev., 80, 1483, 10.1152/physrev.2000.80.4.1483

Crabtree, 2001, Calcium, calcineurin, and the control of transcription, J. Biol. Chem., 276, 2313, 10.1074/jbc.R000024200

Waldmeier, 2002, Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811, Mol. Pharmacol., 62, 22, 10.1124/mol.62.1.22

Griffiths, 1991, Further evidence that cyclosporin-A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis–trans isomerase — implications for the immunosuppressive and toxic effects of cyclosporin, Biochem. J., 274, 611, 10.1042/bj2740611

He, 2002, Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function?, FEBS Lett., 512, 1, 10.1016/S0014-5793(01)03314-2

Halestrap, 1987, The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in matrix volume induced by osmotic strength, valinomycin and Ca2+, Biochem. J., 244, 159, 10.1042/bj2440159

Woodfield, 1998, Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition, Biochem. J., 336, 287, 10.1042/bj3360287

Crompton, 1998, Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore, Eur. J. Biochem., 258, 729, 10.1046/j.1432-1327.1998.2580729.x

Connern, 1994, Recruitment of mitochondrial cyclophilin to the mitochondrial inner membrane under conditions of oxidative stress that enhance the opening of a calcium-sensitive non-specific channel, Biochem. J., 302, 321, 10.1042/bj3020321

PebayPeyroula, 2003, Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside, Nature, 426, 39, 10.1038/nature02056

Dierks, 1990, The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents, Biochim. Biophys. Acta, 1028, 268, 10.1016/0005-2736(90)90176-O

Dierks, 1990, Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-Reagents — evidence for a preformed channel as a structural requirement of carrier-mediated transport, Biochim. Biophys. Acta, 1028, 281, 10.1016/0005-2736(90)90177-P

Brustovetsky, 1996, Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+, Biochemistry, 35, 8483, 10.1021/bi960833v

Brustovetsky, 2002, A large Ca2+-dependent channel formed by recombinant ADP/ATP carrier from Neurospora crassa resembles the mitochondrial permeability transition pore, Biochemistry, 41, 11804, 10.1021/bi0200110

Jung, 1997, Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria, J. Biol. Chem., 272, 21104, 10.1074/jbc.272.34.21104

Manon, 1998, Minireview: characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore?, J. Bioenerg. Biomembr., 30, 419, 10.1023/A:1020533928491

Scott, 2008, Mitochondrial morphology transition is an early indicator of subsequent cell death in Arabidopsis, New Phytol., 177, 90, 10.1111/j.1469-8137.2007.02255.x

Kokoszka, 2004, The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, 427, 461, 10.1038/nature02229

Da Cruz, 2003, Proteomic analysis of the mouse liver mitochondrial inner membrane, J. Biol. Chem., 278, 41566, 10.1074/jbc.M304940200

Halestrap, 2004, Dual role for the ADP/ATP translocator?, Nature, 430, 983, 10.1038/nature02816

Alcala, 2008, A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release, Oncogene, 27, 44, 10.1038/sj.onc.1210600

Tafani, 2001, Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine, Cancer Res., 61, 2459

Mcenery, 1992, Isolation of the mitochondrial benzodiazepine receptor — association with the voltage-dependent anion channel and the adenine nucleotide carrier, Proc. Natl. Acad. Sci. U. S. A., 89, 3170, 10.1073/pnas.89.8.3170

Crompton, 2000, Mitochondrial intermembrane junctional complexes and their role in cell death, J. Physiol., 529, 11, 10.1111/j.1469-7793.2000.00011.x

Cesura, 2003, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore, J. Biol. Chem., 278, 49812, 10.1074/jbc.M304748200

Krauskopf, 2006, Properties of the permeability transition in VDAC1(−/−) mitochondria, Biochim. Biophys. Acta, 1757, 590, 10.1016/j.bbabio.2006.02.007

Baines, 2007, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nat. Cell Biol., 9, 550, 10.1038/ncb1575

Brenner, 2000, Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator, Oncogene, 19, 329, 10.1038/sj.onc.1203298

Marzo, 1998, The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins, J. Exp. Med., 187, 1261, 10.1084/jem.187.8.1261

Crompton, 2003, On the involvement of mitochondrial intermembrane junctional complexes in apoptosis, Curr. Med. Chem., 10, 1473, 10.2174/0929867033457197

Bernardi, 2006, The mitochondrial permeability transition from in vitro artifact to disease target, FEBS J., 273, 2077, 10.1111/j.1742-4658.2006.05213.x

Pastorino, 2005, Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity, Cancer Res., 65, 10545, 10.1158/0008-5472.CAN-05-1925

Arzoine, 2009, Voltage-dependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity, J. Biol. Chem., 284, 3946, 10.1074/jbc.M803614200

Zuurbier, 2005, Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution, Am. J. Physiol., 289, H496

Argaud, 2004, Preconditioning delays Ca2+-induced mitochondrial permeability transition, Cardiovasc. Res., 61, 115, 10.1016/j.cardiores.2003.11.003

Khaliulin, 2004, Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins, Free Radic. Biol. Med., 37, 1, 10.1016/j.freeradbiomed.2004.04.017

Clarke, 2008, Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation, Circ. Res., 102, 1082, 10.1161/CIRCRESAHA.107.167072

Juhaszova, 2004, Glycogen synthase kinase-3 beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 113, 1535, 10.1172/JCI19906

Das, 2008, Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation, Circ. Res., 103, 983, 10.1161/CIRCRESAHA.108.178970

Schwertz, 2007, Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor, Proteomics, 7, 4579, 10.1002/pmic.200700734

Miyamoto, 2008, Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II, Cell Death Differ., 15, 521, 10.1038/sj.cdd.4402285

Hausenloy, 2006, Survival kinases in ischemic preconditioning and postconditioning, Cardiovasc. Res., 70, 240, 10.1016/j.cardiores.2006.01.017

Ko, 2003, Mitochondrial ATP synthasome — cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP, J. Biol. Chem., 278, 12305, 10.1074/jbc.C200703200

Chen, 2004, Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP, J. Biol. Chem., 279, 31761, 10.1074/jbc.M401353200

Krämer, 1998, Mitochondrial carrier proteins can reversibly change their transport mode: the cases of the aspartate/glutamate and the phosphate carrier, Exp. Physiol., 83, 259, 10.1113/expphysiol.1998.sp004111

Stappen, 1993, Functional properties of the reconstituted phosphate carrier from bovine heart mitochondria — evidence for asymmetric orientation and characterization of 3 different transport modes, Biochim. Biophys. Acta, 1149, 40, 10.1016/0005-2736(93)90022-R

Palmieri, 2004, The mitochondrial transporter family (SLC25): physiological and pathological implications, Pflugers Arch., 447, 689, 10.1007/s00424-003-1099-7

Robinson, 2006, Mitochondrial carriers in the cytoplasmic state have a common substrate binding site, Proc. Natl. Acad. Sci. U. S. A., 103, 2617, 10.1073/pnas.0509994103