What a chemistry student should know about the history of Prussian blue

Alexander Kraft1
1Member of the Network Alchemy at the Research Center Gotha of the University Erfurt, Am Graben 48, 15732, Eichwalde, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kraft A (2008) On the discovery and history of Prussian blue. Bull Hist Chem 33:61–67

Ruiz-Bermejo M, Menor-Salvan C, Osuna-Esteban S, Veintemillas-Verdaguer S (2007) The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. Orig Life Evol Biosph 37:507–521

Berger JE (ca. 1730) Kernn aller Fridrichs-Städtischen Begebenheiten. handwritten manuscript, Berliner Staatsbibliothek Preussischer Kulturbesitz, Ms. Bor. Quart. 124, p 26

Teichmeyer HF (1729) Institutiones Chemiae dogmaticae et experimentalis. Bielcke Jena, p. 214–218

Stahl GE (1731) Experimenta, Observationes, Animadversiones, CCC Numero, Chymicae et Physicae. Haude Berlin, p 280–285

Kraft A (2017) Johann Jacob (von) Diesbach, einer der Erfinder des Berliner Blau, in Berliner Kirchenbüchern. Brandenburgisches Genealogisches Jahrbuch 11:102–109

Senckenberg JC (1732) Observationes in me ipaso factae (diary) volume 2. handwritten manuscript, Universitätsbibliothek Johann Christian Senckenberg, Goethe Universität Frankfurt am Main, Na 31,2, transcribed and edited by Vera Faßhauer, p 406

Bartoll J, Jackisch B, Most M, Wenders de Calisse E, Vogtherr CM (2007) Early Prussian blue. Blue and green pigments in the paintings by Watteau, Lancret and Pater in the collection of Frederick II of Prussia. Techne 25:39–46

Bartoll J (2010) Frühe Spuren des Berliner Blaus auf den Gemälden in den preußischen Königsschlössern, 8. Jahrbuch Stiftung Preußische Schlösser und Gärten, Berlin-Brandenburg, pp 219–227

Fischer HL (ed) (1896) Joh. Leonh. Frisch’s Briefwechsel mit G. W. Leibniz. P.Stankiewicz, Berlin

Frisch JL (1710) Notitia Coerulei Berolinensis Nuper Inventi. Misc Berolin 1:377–378

Kraft A (2009) On two letters from Caspar Neumann to John Woodward revealing the secret method for preparation of Prussian blue. Bull Hist Chem 34:134–140

Kraft A (2016) Addendum to “On the discovery and history of Prussian blue”. Bull Hist Chem 41:1–2

Woodward J (1724) Praeparatio Caerulei Prussiaci ex Germania missa ad Johannem Woodward. Philos Trans R Soc 33:15–17

Brown J (1724) Observations and experiments upon the foregoing preparation. Philos Trans R Soc 33:17–24

Geoffroy EF (1725) Observations sur la Preparation de Bleu de Prusse ou Bleu de Berlin. Mem Acad R Sci 153–172

Macquer PJ (1749) Memoire sur une nouvelle espece de teinture bleue, dans laquelle il n’entre ni pastel ni indigo. Mem Acad R Sci 255–264

Marggraf AS (1751) Examen Chymique de l’Eau. Histoire de l’Academie Royale des Sciences et. Belles-Lettres de Berlin 7:131–157

Perls M (1867) Nachweis von Eisenoxyd in gewissen Pigmenten. Virchows Arch 39:42–48

Herschel JFW (1842) On the action of the rays of the solar spectrum on Vegetable Colours, and on some new photographic processes. Philos Trans R Soc 132:181–214

Ware M (1999) Cyanotype: The history, science and art of photographic printing in Prussian blue. National Museum of Photography, Film and Television, Bradford

Köhler H (1914) Die Industrie der Cyanverbindungen: Ihre Entwicklung und ihr gegenwärtiger Stand. Vieweg, Braunschweig, p 82–90

Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578

Robin MB (1962) The color and electronic configuration of Prussian blue. Inorg Chem 1:337–342

Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3 xH2O. Inorg Chem 16:2704–2710

Wu X, Shao M, Wu C, Qian J, Cao Y, Ai X, Yang H (2016) Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl Mater Interfaces 8:23706–23712

Duncan JF, Wigley PWR (1963) The electronic structure of the iron atoms in complex iron cyanides. J Chem Soc 1120–1125

Nigrovic V (1963) Enhancement of the excretion of radiocaesium in rats by ferric cyanoferrate(II). Int J Radiat Biol 7:307–309

Heydlauf H (1969) Ferric-cyanoferrate (II): an effective antidote in thallium poisoning. Eur J Pharmacol 6:340–344

Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886–887

Kraft A, Rottmann M, Heckner K-H (2006) Large area electrochromic glazing with ion conducting PVB interlayer and two complementary electrodeposited electrochromic layers. Solar Energy Mater Solar Cells 90:469–476

Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225–1231

Itaya K, Akahoshi H, Toshima S (1982) Electrochemistry of Prussian blue modified electrodes: an electrochemical preparation method. J Electrochem Soc 129:1498–1500

Neff VD (1985) Some performance characteristics of a Prussian blue battery. J Electrochem Soc 132:1382–1384

Yan XH, Zhao TS, An L, Zhao G, Shi L (2016) A direct methanol-hydrogen peroxide fuel cell with a Prussian blue cathode. Int J Hydrog Energy 41:5135–5140

Fu L, You SJ, Zhang GQ, Yang FL, Fang XH, Gong Z (2011) PB/PANI-modified electrode used as a novel oxygen reduction cathode in microbial fuel cell. Biosens Bioelectron 26:1975–1979

Xie X, Ye M, Liu C, Hsu PC, Criddle CS, Cui Y (2015) Use of low cost and easily regenerated Prussian blue cathodes for efficient electrical energy recovery in a microbial battery. Energy Environ Sci 8:546–551

Nonoguchi Y, Murayama T, Ishizaki M, Kanaizuka K, Kurihara M, Hata K, Kawai T (2014) SWNT composites with compositionally tunable Prussian blue nanoparticles for thermoelectric coordination programming materials. Chem Lett 43:1254–1256

Wang Q, Zou Y, Xiang C, Chu H, Liu S, Yan E, Xu F, Sun L, Tang C (2016) Prussian-Blue-Doped super-activated carbon as a high performance supercapacitor electrode material. Int J Electrochem Sci 11:5679–5690

Itaya K, Shoji N, Uchida I (1984) Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes. J Am Chem Soc 106:3423–3429

Karyakin AA, Gitelmacher OV, Karyakina EE (1994) A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 27:2861–2869

Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using Prussian blue-based artificial peroxidase as a transducer for hydrogen peroxide. Anal Chem 72:1720–1723

Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21:389–407

Krishnan V, Xidis AL, Neff VD (1990) Prussian blue solid-state films and membranes as potassium ion-selective electrodes. Anal Chim Acta 239:7–12

Kahlert H, Komorsky-Lovrić Š, Hermes M, Scholz F (1996) A Prussian blue-based reactive electrode (reactrode) for the determination of thallium ions. Fresenius J Anal Chem 356:204–208

Hermes M, Scholz F (1997) The electrochemical determination of ammonium based on the selective inhibition of the low-spin iron(II)/(III) system of Prussian blue. J Solid State Electrochem 1:215–220

Long J, Guari Y, Guerin C, Larionova J (2016) Prussian blue type nanoparticles for biomedical applications. Dalton Trans 45:17581–17587

Liang X, Deng Z, Jing L, Li X, Li C, Huang M, Dai Z (2013) Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chem Commun 49:11029–11031

Fu G, Liu W, Feng S, Yue X (2012) Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun 48:11567–11569

Wang SJ, Chen CS, Chen LC (2013) Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Sci Technol Adv Mater 14:044405

Li X, Liang XL, Ma F, Jing L, Lin I, Yang Y, Feng SS, Fu G, Yue XL, Dai ZF (2014) Chitosan stabilized prussian blue nanoparticles for photothermally enhanced gene delivery. Colloids Surf B Biointerfaces 123:629–638

Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y (2016) Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc 138:5860–5865

Scholz F, Kahlert H (2006) Electrochemistry of polycyano-metalates. In: Bard AJ, Stratmann M, Scholz F, Pickett CJ (eds) Encyclopedia of electrochemistry, Vol. 7, Chap. 23. Wiley-VCH, Weinheim, pp 701–721

Widmann A, Kahlert H, Petrovic-Prelevic I, Wulff H, Yakhmi JV, Bagkar N, Scholz F (2002) Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. Inorg Chem 41:5706–5715

de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal hexacyanoferrates: electrosynthesis, in situ characterization and applications. Chem Mater 15:3046–3062

Kaye SS, Long JR (2007) The role of vacancies in the hydrogen storage properties of Prussian blue analogues. Catal Today 120:311–316

Karadas F, El-Faki H, Deniz E, Yavuz CT, Aparicio S, Atilhan M (2012) CO2 adsorption studies on Prussian blue analogues. Microporous Mesoporous Mater 162:91–97

Verdaguer M, Galvez N, Garde R, Desplanches C (2002) Electrons at work in Prussian blue analogues. Electrochem Soc Interface Fall 2002:28–32

Goujon A, Varret F, Escax V, Bleuzen A, Verdaguer M (2001) Thermo-chromism and photo-chromism in a Prussian blue analogue. Polyhedron 20:1339–1345

Evangelisti M, Manuel E, Affronte M, Okubo M, Train C, Verdaguer M (2006) Vacancy-driven magnetocaloric effect in Prussian blue analogues. J Magn Magn Mater 316:e569–e571