Weyl functions of generalized dirac systems: Integral representation, the inverse problem and discrete interpolation

Journal d'Analyse Mathematique - Tập 116 Số 1 - Trang 17-51 - 2012
Fritzsche, B.1, Kirstein, B.1, Sakhnovich, A. L.2
1Facultät für Mathematik und Informatik Mathematisches Institut, Universität Leipzig, Leipzig, Germany
2Facultät für Mathematik, Universität Wien, Wien, Austria

Tóm tắt

We study self-adjoint Dirac systems and subclasses of canonical systems (which generalize Dirac systems) and obtain explicit and global solutions for direct and inverse problems. We also derive a local Borg-Marchenko-type theorem, integral representation of the Weyl function, and results on the interpolation of Weyl functions.

Tài liệu tham khảo

citation_title=Krein systems; citation_inbook_title= , Vol. 1; citation_publication_date=2009; citation_pages=27-63; citation_id=CR1; citation_author=D. Alpay; citation_author=I. Gohberg; citation_author=M. A. Kaashoek; citation_author=L. Lerer; citation_author=A. L. Sakhnovich; citation_publisher=Birkhäuser Verlag citation_journal_title=Integral Equations Operator Theory; citation_title=Krein systems and canonical systems on a finite interval: accelerants with a jump discontinuity at the origin and continuous potentials; citation_author=D. Alpay, I. Gohberg, M. A. Kaashoek, L. Lerer, A. L. Sakhnovich; citation_volume=68; citation_publication_date=2010; citation_pages=115-150; citation_doi=10.1007/s00020-010-1803-x; citation_id=CR2 citation_journal_title=J. Comput. Appl. Math.; citation_title=M-operators: a generalisation of Weyl-Titchmarsh theory; citation_author=W. O. Amrein, D. B. Pearson; citation_volume=171; citation_publication_date=2004; citation_pages=1-26; citation_doi=10.1016/j.cam.2004.01.020; citation_id=CR3 citation_title=J-contractive Matrix Valued Functions and Related Topics; citation_publication_date=2008; citation_id=CR4; citation_author=D. Z. Arov; citation_author=H. Dym; citation_publisher=Cambridge University Press citation_journal_title=Comm. Math. Phys.; citation_title=The boundary control approach to the Titchmarsh-Weyl m-function, I, The response operator and the A-amplitude; citation_author=S. Avdonin, V. Mikhaylov, A. Rybkin; citation_volume=275; citation_publication_date=2007; citation_pages=791-803; citation_doi=10.1007/s00220-007-0315-2; citation_id=CR5 citation_journal_title=J. Math. Anal. Appl.; citation_title=The interpolation of the Titchmarsh-Weyl function; citation_author=A. Boumenir, V. K. Tuan; citation_volume=335; citation_publication_date=2007; citation_pages=72-78; citation_doi=10.1016/j.jmaa.2007.01.054; citation_id=CR6 citation_journal_title=J. Funct. Anal.; citation_title=Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval; citation_author=D. Chelkak, E. Korotyaev; citation_volume=257; citation_publication_date=2009; citation_pages=1546-1588; citation_doi=10.1016/j.jfa.2009.05.010; citation_id=CR7 citation_journal_title=J. Phys. A; citation_title=Algebraic construction of the Darboux matrix revisited; citation_author=J. L. Ciésliński; citation_volume=42; citation_publication_date=2009; citation_pages=404003; citation_doi=10.1088/1751-8113/42/40/404003; citation_id=CR8 citation_journal_title=Trans. Amer. Math. Soc.; citation_title=Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators; citation_author=S. Clark, F. Gesztesy; citation_volume=354; citation_publication_date=2002; citation_pages=3475-3534; citation_doi=10.1090/S0002-9947-02-03025-8; citation_id=CR9 citation_title=On self-adjoint and J-self-adjoint Dirac-type operators: a case study; citation_inbook_title=Recent Advances in Differential Equations and Mathematical Physics; citation_publication_date=2006; citation_pages=103-140; citation_id=CR10; citation_author=S. Clark; citation_author=F. Gesztesy; citation_publisher=Amer. Math. Soc. citation_journal_title=Oper. Matrices; citation_title=Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients; citation_author=S. Clark, F. Gesztesy, M. Zinchenko; citation_volume=1; citation_publication_date=2007; citation_pages=535-592; citation_id=CR11 S. Clark, F. Gesztesy and M. Zinchenko, Borg-Marchenko-type uniqueness results for CMV operators, Skr. K. Nor. Vidensk. Selsk. 2008, 1–18. citation_journal_title=Duke Math. J.; citation_title=Applications of a commutation formula; citation_author=P. A. Deift; citation_volume=45; citation_publication_date=1978; citation_pages=267-310; citation_doi=10.1215/S0012-7094-78-04516-7; citation_id=CR13 citation_title=Weyl’s work on singular Sturm-Liouville operators; citation_inbook_title=Groups and Analysis. The Legacy of Hermann Weyl; citation_publication_date=2008; citation_pages=63-83; citation_id=CR14; citation_author=W. N. Everitt; citation_author=H. Kalf; citation_publisher=Cambridge University Press citation_journal_title=Oper. Matrices; citation_title=Weyl matrix-functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions; citation_author=B. Fritzsche, B. Kirstein, I. Ya. Roitberg, A. L. Sakhnovich; citation_volume=2; citation_publication_date=2008; citation_pages=201-231; citation_id=CR15 citation_journal_title=Integral Equations Operator Theory; citation_title=Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system; citation_author=B. Fritzsche, B. Kirstein, A. L. Sakhnovich; citation_volume=66; citation_publication_date=2010; citation_pages=231-251; citation_doi=10.1007/s00020-010-1739-1; citation_id=CR16 citation_journal_title=J. Funct. Anal.; citation_title=A complete spectral characterization of the double commutation method; citation_author=F. Gesztesy; citation_volume=117; citation_publication_date=1993; citation_pages=401-446; citation_doi=10.1006/jfan.1993.1132; citation_id=CR17 citation_title= , Part 2; citation_publication_date=2007; citation_id=CR18; citation_publisher=Amer. Math. Soc citation_journal_title=Ann. of Math. (2); citation_title=A new approach to inverse spectral theory, II, General real potentials and the connection to the spectral measure; citation_author=F. Gesztesy, B. Simon; citation_volume=152; citation_publication_date=2000; citation_pages=593-643; citation_doi=10.2307/2661393; citation_id=CR19 citation_journal_title=Proc. Amer. Math. Soc.; citation_title=On the double commutation method; citation_author=F. Gesztesy, G. Teschl; citation_volume=124; citation_publication_date=1996; citation_pages=1831-1840; citation_doi=10.1090/S0002-9939-96-03299-6; citation_id=CR20 citation_journal_title=Math. Nachr.; citation_title=On spectral theory for Schrödinger operators with strongly singular potentials; citation_author=F. Gesztesy, M. Zinchenko; citation_volume=279; citation_publication_date=2006; citation_pages=1041-1082; citation_doi=10.1002/mana.200510410; citation_id=CR21 citation_title= , Vol. I; citation_publication_date=1990; citation_id=CR22; citation_author=I. Gohberg; citation_author=S. Goldberg; citation_author=M. A. Kaashoek; citation_publisher=Birkhäuser citation_journal_title=Math. Nachr.; citation_title=Canonical systems with rational spectral densities: explicit formulas and applications; citation_author=I. Gohberg, M. A. Kaashoek, A. L. Sakhnovich; citation_volume=194; citation_publication_date=1998; citation_pages=93-125; citation_doi=10.1002/mana.19981940108; citation_id=CR23 citation_journal_title=Asymptot. Anal.; citation_title=Scattering problems for a canonical system with a pseudo-exponential potential; citation_author=I. Gohberg, M. A. Kaashoek, A. L. Sakhnovich; citation_volume=29; citation_publication_date=2002; citation_pages=1-38; citation_id=CR24 citation_title=Theory and Applications of Volterra Operators in Hilbert Space; citation_publication_date=1967; citation_id=CR25; citation_author=I. Gohberg; citation_author=M. G. Krein; citation_publisher=Nauka citation_title=Darboux Transformations in Integrable Systems. Theory and Their Applications to Geometry; citation_publication_date=2005; citation_id=CR26; citation_author=C. H. Gu; citation_author=H. Hu; citation_author=Z. Zhou; citation_publisher=Springer citation_journal_title=Integral Equations Operator Theory; citation_title=Hermitian indefinite functions and Pontryagin spaces of entire functions; citation_author=M. Kaltenbäck; citation_volume=35; citation_publication_date=1999; citation_pages=172-197; citation_doi=10.1007/BF01196382; citation_id=CR27 A. Kostenko, A. Sakhnovich, and G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. IMRN (2011) art. rnr065. citation_journal_title=Math. Nachr.; citation_title=Commutation methods for Schrödinger operators with strongly singular potentials; citation_author=A. Kostenko, A. Sakhnovich, G. Teschl; citation_volume=285; citation_publication_date=2012; citation_pages=392-410; citation_doi=10.1002/mana.201000108; citation_id=CR29 citation_journal_title=Dokl. Akad. Nauk SSSR; citation_title= Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian); citation_author=M. G. Krein; citation_volume=105; citation_publication_date=1955; citation_pages=637-640; citation_id=CR30 citation_journal_title=Math. Nachr.; citation_title= Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitescher Operatoren im Raume Πκ zusammenhängen, I, Einige Funktionenklassen und ihre Darstellungen ; citation_author=M. G. Krein, H. Langer; citation_volume=77; citation_publication_date=1977; citation_pages=187-236; citation_doi=10.1002/mana.19770770116; citation_id=CR31 citation_journal_title=Integral Equations Operator Theory; citation_title=Direct and inverse spectral problems for generalized strings; citation_author=H. Langer, H. Winkler; citation_volume=30; citation_publication_date=1998; citation_pages=409-431; citation_doi=10.1007/BF01257875; citation_id=CR32 citation_journal_title=Inverse Problems; citation_title=A local inverse spectral theorem for Hamiltonian systems; citation_author=M. Langer, H. Woracek; citation_volume=27; citation_publication_date=2011; citation_pages=055002; citation_doi=10.1088/0266-5611/27/5/055002; citation_id=CR33 citation_title=Sturm-Liouville and Dirac Operators; citation_publication_date=1991; citation_id=CR34; citation_author=B. M. Levitan; citation_author=I. S. Sargsjan; citation_publisher=Kluwer citation_title=Darboux Transformations and Solitons; citation_publication_date=1991; citation_id=CR35; citation_author=V. B. Matveev; citation_author=M. A. Salle; citation_publisher=Springer citation_journal_title=Duke Math. J.; citation_title=Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter; citation_author=R. Mennicken, A. L. Sakhnovich, C. Tretter; citation_volume=109; citation_publication_date=2001; citation_pages=413-449; citation_doi=10.1215/S0012-7094-01-10931-9; citation_id=CR36 citation_title=Fourier Transforms in the Complex Domain; citation_publication_date=1987; citation_id=CR37; citation_author=R. E. A. C. Paley; citation_author=N. Wiener; citation_publisher=Amer. Math. Soc. citation_journal_title=J. Operator Theory; citation_title=Spectral problems for some indefinite cases of canonical differential equations; citation_author=J. Rovnyak, L. A. Sakhnovich; citation_volume=51; citation_publication_date=2004; citation_pages=115-139; citation_id=CR38 citation_journal_title=Proc. Amer. Math. Soc.; citation_title=A new interpolation formula for the Titchmarsh-Weyl function; citation_author=A. Rybkin, V. K. Tuan; citation_volume=137; citation_publication_date=2009; citation_pages=4177-4185; citation_doi=10.1090/S0002-9939-09-09983-3; citation_id=CR39 citation_journal_title=Soviet Math. (Iz. VUZ); citation_title=Asymptotics of spectral functions of an S-node; citation_author=A. L. Sakhnovich; citation_volume=32; citation_publication_date=1988; citation_pages=92-105; citation_id=CR40 citation_journal_title=Ukrainian Math. J.; citation_title=Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it; citation_author=A. L. Sakhnovich; citation_volume=42; citation_publication_date=1990; citation_pages=316-323; citation_doi=10.1007/BF01057016; citation_id=CR41 citation_journal_title=J. Funct. Anal.; citation_title=Iterated Bäcklund-Darboux transform for canonical systems; citation_author=A. L. Sakhnovich; citation_volume=144; citation_publication_date=1997; citation_pages=359-370; citation_doi=10.1006/jfan.1996.3003; citation_id=CR42 citation_journal_title=J. Math. Anal. Appl.; citation_title=Generalized Bäcklund-Darboux transformation: spectral properties and nonlinear equations; citation_author=A. L. Sakhnovich; citation_volume=262; citation_publication_date=2001; citation_pages=274-306; citation_doi=10.1006/jmaa.2001.7577; citation_id=CR43 citation_journal_title=Inverse Problems; citation_title=Dirac type and canonical systems: spectral and Weyl-Titchmarsh matrix functions, direct and inverse problems; citation_author=A. L. Sakhnovich; citation_volume=18; citation_publication_date=2002; citation_pages=331-348; citation_doi=10.1088/0266-5611/18/2/303; citation_id=CR44 citation_journal_title=Inverse Problems; citation_title=Weyl functions, the inverse problem and special solutions for the system auxiliary to the nonlinear optics equation; citation_author=A. L. Sakhnovich; citation_volume=24; citation_publication_date=2008; citation_pages=025026; citation_doi=10.1088/0266-5611/24/2/025026; citation_id=CR45 citation_journal_title=Integral Equations Operator Theory; citation_title=Construction of the solution of the inverse spectral problem for a system depending rationally on the spectral parameter, Borg-Marchenko-type theorem, and sine-Gordon equation; citation_author=A. L. Sakhnovich; citation_volume=69; citation_publication_date=2011; citation_pages=567-600; citation_doi=10.1007/s00020-010-1843-2; citation_id=CR46 citation_journal_title=Positivity; citation_title=On explicit inversion of a subclass of operators with D-difference kernels and Weyl theory of the corresponding canonical systems; citation_author=A. L. Sakhnovich, A. A. Karelin, J. Seck-Tuoh-Mora, G. Perez-Lechuga, M. Gonzalez-Hernandez; citation_volume=14; citation_publication_date=2010; citation_pages=547-564; citation_doi=10.1007/s11117-009-0036-1; citation_id=CR47 citation_journal_title=Ukr. Mat. J.; citation_title= Spectral analysis of Volterra’s operators defined in the space of vectorfunctions L (0, l); citation_author=L. A. Sakhnovich; citation_volume=16; citation_publication_date=1964; citation_pages=259-268; citation_id=CR48 citation_journal_title=Russian Math. Surveys; citation_title=Factorisation problems and operator identities; citation_author=L. A. Sakhnovich; citation_volume=41; citation_publication_date=1986; citation_pages=1-64; citation_doi=10.1070/RM1986v041n01ABEH003200; citation_id=CR49 citation_title=Integral Equations with Difference Kernels on Finite Intervals; citation_publication_date=1996; citation_id=CR50; citation_author=L. A. Sakhnovich; citation_publisher=Birkhäuser Verlag citation_title=Interpolation Theory and its Applications; citation_publication_date=1997; citation_id=CR51; citation_author=L. A. Sakhnovich; citation_publisher=Kluwer Academic Publishers citation_journal_title=Integral Equations Operator Theory; citation_title=On a class of canonical systems on half-axis; citation_author=L. A. Sakhnovich; citation_volume=31; citation_publication_date=1998; citation_pages=92-112; citation_doi=10.1007/BF01203458; citation_id=CR52 L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems, Method of Operator Identities, Birkhäuser Verlag, 1999. citation_journal_title=Ann. of Math. (2); citation_title=A new approach to inverse spectral theory, I, Fundamental formalism; citation_author=B. Simon; citation_volume=150; citation_publication_date=1999; citation_pages=1029-1057; citation_doi=10.2307/121061; citation_id=CR54 citation_title=Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators; citation_publication_date=2009; citation_id=CR55; citation_author=G. Teschl; citation_publisher=Amer. Math. Soc. citation_journal_title=Comm. Math. Phys.; citation_title=On the integrability of classical spinor models in two-dimensional space-time; citation_author=V. E. Zakharov, A. V. Mikhailov; citation_volume=74; citation_publication_date=1980; citation_pages=21-40; citation_doi=10.1007/BF01197576; citation_id=CR56