Weyl equivalence for rank 2 Nichols algebras of diagonal type

Springer Science and Business Media LLC - Tập 51 Số 1 - Trang 281-289 - 2005
I. Heckenberger1
1Mathematisches Institut Augustusplatz, Universität Leipzig, Leipzig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. Andruskiewitsch,About finite dimensional Hopf algebras. In Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), vol.294, ser. Contemp. Math., Amer. Math. Soc. (2002) pp. 1–57.

N. Andruskiewitsch—M. Graña,Braided Hopf algebras over non-abelian finite groups. Bol. Acad. Nac. Cienc. (Córdoba).63 (1999), pp. 45–78.

N. Andruskiewitsch—H.-J. Schneider,Lifting of quantum linear spaces and pointed Hopf algebras of order p 3. J. Algebra.209 (1998), pp. 658–691.

N. Andruskiewitsch—H.-J. Schneider,Finite quantum groups and Cartan matrices. Adv. Math.154 (2000), pp. 1–45.

N. Andruskiewitsch—H.-J. Schneider.,Pointed Hopf algebras. New Directions in Hopf Algebras, vol.43 ser. MSRI Publications. Cambridge University Press (2002).

N. Bourbaki,Groupes et algèbres de Lie, Ch. 4, 5 et 6. Eléments de mathematique. Hermann, Paris (1968).

A.H. Clifford—G.B. Preston,The algebraic theory of semigroups, vol.7, ser. Mathematical surveys. Amer. Math. Soc., Providence, Rhode Island (1961).

M. Graña,A freeness theorem for Nichols algebras. J. Algebra.231 (1) (2000), pp. 235–257.

I. Heckenberger,Finite dimensional rank 2 Nichols algebras of diagonal type. I: Examples. Preprint math.QA/0402350

I. Heckenberger,Finite dimensional rank 2 Nichols algebras of diagonal type. II: Classification. Preprint math.QA/0404008

I. Heckenberger,The Weyl-Brandt groupoid of a Nichols algebra of diagonal type. Preprint math.QA/0411477

V. Kharchenko,A quantum analog of the Poincaré-Birkhoff-Witt theorem. Algebra and Logic.38 (4) (1999), pp. 259–276.

A. Milinski—H.-J. Schneider,Pointed indecomposable Hopf algebras over Coxeter groups. In New trends in Hopf algebra theory (La Falda, 1999), vol.267, ser. Contemp. Math., Providence, RI (2000). Amer. Math. Soc., pp. 215–236.

M. Rosso,Quantum groups and quantum shuffles. Invent. Math.133 (1998), pp. 399–416.