Wet and Coarse: The Robustness of Two-Stage Crude Glycerol Mediated Solvothermal Liquefaction of Residual Biomass
Tóm tắt
Biomass residues were liquefied via two stage crude glycerol (CG) mediated solvothermal liquefaction (STL) at moderate temperatures with intention for industry-friendly production and direct biopolyol utilisation. Digested sewage sludge, hemp stalk hurd and sugar beet pulp were chosen as the local case feedstocks. The study goal was to investigate how robust CG-mediated STL is in terms of different feedstocks, powder particle size (< 0.2 to 0.5–1 mm) and dry matter content (20–100%). Sugar beet pulp performed best in terms of biomass conversion, followed by hemp stalk hurds and digested sewage sludge at 80%, 56% and 42%, respectively. Digested sewage sludge and sugar beet pulp liquefaction runs indicate that the extent of the base catalysed step could be lessened for some feedstocks. Hydroxyl numbers of the slightly alkaline biopolyols varied from 77 to 282 mgKOH/g. The process is shown to be robust universally with respect to feedstock particle size, while varied dry matter content has differing effects on the three residual biomass resources.
Tài liệu tham khảo
Avar, G., Meier-Westhues, U., Casselmann, H., Achten, D.: Polyurethanes. Polym. Sci. 10, 411–441 (2012). https://doi.org/10.1016/B978-0-444-53349-4.00275-2
Zia, K.M., Bhatti, H.N., Bhatti, I.A.: Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 67(8), 675–692 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
Hu, S., Luo, X., Li, Y.: Polyols and polyurethanes from the liquefaction of lignocellulosic biomass. ChemSusChem 7(1), 66–72 (2014). https://doi.org/10.1002/cssc.201300760
Kurimoto, Y., Doi, S., Tamura, Y.: Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53(6), 617–622 (1999). https://doi.org/10.1515/HF.1999.102
Budija, F., Tavzes, Č., Zupančič-Kralj, L., Petrič, M.: Self-crosslinking and film formation ability of liquefied black poplar. Bioresour. Technol. 100(13), 3316–3323 (2009). https://doi.org/10.1016/j.biortech.2009.02.004
Zhang, K., Pei, Z., Wang, D.: Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour. Technol. 199, 21–33 (2016). https://doi.org/10.1016/j.biortech.2015.08.102
Zhang, H., Yang, H., Guo, H., Huang, C., Xiong, L., Chen, X.: Kinetic study on the liquefaction of wood and its three cell wall component in polyhydric alcohols. Appl. Energy 113, 1596–1600 (2014). https://doi.org/10.1016/j.apenergy.2013.09.009
Zhang, H., Pang, H., Shi, J., Fu, T., Liao, B.: Investigation of liquefied wood residues based on cellulose, hemicellulose, and lignin. J. Appl. Polym. Sci. 123(2), 850–856 (2012). https://doi.org/10.1002/app.34521
Zhao, Y., Yan, N., Feng, M.: Polyurethane foams derived from liquefied mountain pine beetle-infested barks. J. Appl. Polym. Sci. 123(5), 2849–2858 (2012). https://doi.org/10.1002/app.34806
Hu, S., Wan, C., Li, Y.: Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour. Technol. 103(1), 227–233 (2012b). https://doi.org/10.1016/j.biortech.2011.09.125
Briones, R., Serrano, L., Labidi, J.: Valorization of some lignocellulosic agro-industrial residues to obtain biopolyols. J. Chem. Technol. Biotechnol. 87(2), 244–249 (2012). https://doi.org/10.1002/jctb.2706
Kim, K.H., Yu, J.H., Lee, E.Y.: Crude glycerol-mediated liquefaction of saccharification residues of sunflower stalks for production of lignin biopolyols. J. Ind. Eng. Chem. 38, 175–180 (2016). https://doi.org/10.1016/j.jiec.2016.05.002
Helling, R.K., Russell, D.A.: Use of life cycle assessment to characterize the environmental impacts of polyol production options. Green Chem. 11(3), 380 (2009). https://doi.org/10.1039/b815833a
Martn, M., Grossmann, I.E.: On the systematic synthesis of sustainable biorefineries. Ind. Eng. Chem. Res. 52(9), 3044–3064 (2013). https://doi.org/10.1021/ie2030213
Johnson, D.T., Taconi, K.A.: The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ. Prog. 26(4), 338–348 (2007). https://doi.org/10.1002/ep.10225
Luo, X., Hu, S., Zhang, X., Li, Y.: Thermochemical conversion of crude glycerol to biopolyols for the production of polyurethane foams. Bioresour. Technol. 139, 323–329 (2013). https://doi.org/10.1016/j.biortech.2013.04.011
Hu, S., Luo, X., Wan, C., Li, Y.: Characterization of crude glycerol from biodiesel plants. J. Agric. Food Chem. 60(23), 5915–5921 (2012a). https://doi.org/10.1021/jf3008629
Hu, S., Li, Y.: Polyols and polyurethane foams from base-catalyzed liquefaction of lignocellulosic biomass by crude glycerol: effects of crude glycerol impurities. Ind. Crops Prod. 57, 188–194 (2014a). https://doi.org/10.1016/j.indcrop.2014.03.032
Hu, S., Li, Y.: Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour. Technol. 161, 410–415 (2014b). https://doi.org/10.1016/j.biortech.2014.03.072
Toor, S.S., Rosendahl, L., Rudolf, A.: Hydrothermal liquefaction of biomass: a review of subcritical water technologies’. Energy 36(5), 2328–2342 (2011). https://doi.org/10.1016/j.energy.2011.03.013
Haarlemmer, G., Roubaud, A., Roussely, J., Déniel, M.: Hydrothermal liquefaction of wet waste streams. In: Proceedings of Sardinia 2017 Symposium, October (2017)
Gandolfi, S., Ottolina, G., Riva, S., Fantoni, G.P., Patel, I.: Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources 8(2), 2641–2656 (2013). https://doi.org/10.15376/biores.8.2.2641-2656
Michel, F., Thibault, J.F., Barry, J.L.: Preparation and characterisation of dietary fibre from sugar beet pulp. J. Sci. Food Agric. 42(1–3), 77–85 (1988). https://doi.org/10.1002/jsfa.2740420109
Cui, S., Liu, Z., Li, Y.: Bio-polyols synthesized from crude glycerol and applications on polyurethane wood adhesives. Ind. Crops Prod. 108, 798–805 (2017). https://doi.org/10.1016/j.indcrop.2017.07.043
Kosmela, P., Hejna, A., Formela, K., Haponiuk, J.T., Piszczyk, Ł.: Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization. Cellulose 23(5), 2929–2942 (2016). https://doi.org/10.1007/s10570-016-1034-7
Kim, K.H., Jo, Y.J., Lee, C.G., Lee, E.Y.: Solvothermal liquefaction of microalgal Tetraselmis sp. biomass to prepare biopolyols by using PEG#400-blended glycerol. Algal Res. 12, 539–544 (2015). https://doi.org/10.1016/j.algal.2015.08.007
Jo, Y.J., Ly, H.V., Kim, J., Kim, S.S., Lee, E.Y.: Preparation of biopolyol by liquefaction of palm kernel cake using PEG#400 blended glycerol. J. Ind. Eng. Chem. 29, 304–313 (2015). https://doi.org/10.1016/j.jiec.2015.04.010
Xu, J., Jiang, J., Hse, C.Y., Shupe, T.F.: Preparation of polyurethane foams using fractionated products in liquefied wood. J. Appl. Polym. Sci. 131(7), 1–7 (2014). https://doi.org/10.1002/app.40096
EB, Hassan, Shukry, N.: Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind. Crops Prod. 27(1), 33–38 (2008). https://doi.org/10.1016/j.indcrop.2007.07.004
Briones, R., Serrano, L., Llano-Ponte, R., Labidi, J.: Polyols obtained from solvolysis liquefaction of biodiesel production solid residues. Chem. Eng. J. 175(1), 169–175 (2011). https://doi.org/10.1016/j.cej.2011.09.090
Kosmela, P., Kazimierski, P., Formela, K., Haponiuk, J., Piszczyk, Ł.: Liquefaction of macroalgae Enteromorpha biomass for the preparation of biopolyols by using crude glycerol. J. Ind. Eng. Chem. 56, 399–406 (2017). https://doi.org/10.1016/j.jiec.2017.07.037
Pavier, C., Gandini, A.: Oxypropylation of sugar beet pulp. 1. Optimisation of the reaction. Ind. Crops Prod. 12(1), 1–8 (2000). https://doi.org/10.1016/S0926-6690(99)00039-4
Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48(5), 2583–2589 (2009). https://doi.org/10.1021/ie801251r