West semigroups as compactifications of locally compact abelian groups

Springer Science and Business Media LLC - Tập 93 Số 1 - Trang 71-85 - 2016
Elcim Elgun1
1Department of Mathematical Sciences, Lakehead University, Thunder Bay, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Berglund, J.F., Junghenn, H.D., Milnes, P.: Analysis on Semigroups. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, Toronto (1989)

Bordbar, B., Pym, J.: The weakly almost periodic compactification of a direct sum of finite groups. Math. Proc. Camb. Philos. Soc. 124(3), 421–449 (1998)

Bouziad, A., Lemańczyk, M., Mentzen, M.K.: A compact monothetic semitopological semigroup whose set of idempotents is not closed. Semigr. Forum 62(1), 98–102 (2001)

Brown, G.: Idempotents in the closure of characters. Bull. Lond. Math. Soc. 4, 43–46 (1972)

Brown, G., Moran, M.: Idempotents of compact monothetic semigroups. Proc. Lond. Math. Soc 22(3), 203–216 (1971)

Brown, G., Moran, M.: An unusual compact monothetic semigroup. Bull. Lond. Math. Soc. 3, 291–296 (1971)

Brown, G., Moran, M.: Idempotents in compact monothetic semigroups. Semigr. Forum 3(1971/72), 270–274 (1972)

Brown, G., Moran, M.: The idempotent semigroups of compact monothetic semigroups. Proc. R. Ir. Acad. Sect. A 72, 17–33 (1972)

Ellis, R.: Locally compact transformation groups. Duke Math. J. 24, 119–125 (1957)

Eymard, P.: L’algébre de Fourier d’un groupe localement compact. Bull. Soc. Math. Fr. 92, 181–236 (1964)

Graham, C.C., McGehee, O.C.: Essays in Commutative Harmonic Analysis. Grundlehren Der Mathematischen Wissenschaften, vol. 238. Springer, New York (1979)

Lawson, J.D.: Joint continuity in semitopological semigroups. Ill. J. Math. 18, 275–285 (1974)

Lawson, J.D.: Additional notes on continuity in semitopological semigroups. Semigr. Forum 12(3), 265–280 (1976)

Megrelishvili, M.: Reflexively representable but not Hilbert representable compact flows and semitopological semigroups. Colloq. Math. 110, 383–407 (2008)

Rudin, W.: Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12. Wiley, New York (1962)

Ruppert, W.A.F.: Compact Semitopological Semigroups: An Intrinsic Theory. Lecture Notes in Mathematics, vol. 1079. Springer, Berlin (1984)

Spronk, N., Stokke, R.: Matrix coefficients of unitary representations and associated compactifications. Indiana Univ. Math. J. 62(1), 99–148 (2013)

West, T.T.: Weakly compact monothetic semigroups of operators in Banach spaces. Proc. R. Ir. Acad. Sect. A 67(1968), 27–37 (1968)