Were chondrites magnetized by the early solar wind?
Tài liệu tham khảo
Abbott, 1982, The theory of radiatively driven stellar winds. II – The line acceleration, Astrophys. J., 259, 282, 10.1086/160166
Belcher, 1975, Stellar winds driven by Alfven waves, Astrophys. J., 200, 369, 10.1086/153798
Bell, 2013, Pre-main-sequence isochrones? II. Revising star and planet formation timescales, Mon. Not. R. Astron. Soc., 434, 806, 10.1093/mnras/stt1075
Bryson, J.F.J. Weiss, B.P. Scholl, A. Getzin, B.L. Abrahams, J.N.H. Nimmo, F., 2016. Paleomagnetic evidence for a partially differentiated H chondrite parent planetesimal. Abstract P53D-02 presented at 2016 Fall Meeting, AGU, San Francisco, Calif., 11–15 Dec.
Budde, 2016, Tungsten isotopic constraints on the age and origin of chondrules, Proc. Natl. Acad. Sci., 113, 2886, 10.1073/pnas.1524980113
Carporzen, 2011, Magnetic evidence for a partially differentiated carbonaceous chondrite parent body, Proc. Natl. Acad. Sci. USA, 108, 6386, 10.1073/pnas.1017165108
Carry, 2012, Density of asteroids, Planet. Space Sci., 73, 98, 10.1016/j.pss.2012.03.009
Cody, 2008, Organic thermometry for chondritic parent bodies, Earth Planet. Sci. Lett., 272, 446, 10.1016/j.epsl.2008.05.008
Cohen, 2010, The coronal structure of AB Doradus, Astrophys. J., 721, 80, 10.1088/0004-637X/721/1/80
Connelly, 2012, The absolute chronology and thermal processing of solids in the solar protoplanetary disk, Science, 338, 651, 10.1126/science.1226919
Cournède, 2015, An early solar system magnetic field recorded in CM chondrites, Earth Planet. Sci. Lett., 410, 62, 10.1016/j.epsl.2014.11.019
Crank, 1979, 414
Desch, 2001, The magnetic decoupling stage of star formation, Astrophys. J., 550, 314, 10.1086/319703
Donati, 2006, The surprising magnetic topology of τ Sco: fossil remnant or dynamo output?, Mon. Not. R. Astron. Soc., 370, 629, 10.1111/j.1365-2966.2006.10558.x
Duba, 1984, High temperature electrical conductivity of the carbonaceous chondrites Allende and Murchison, 232
Dyal, 1977
Elkins-Tanton, 2011, Chondrites as samples of differentiated planetesimals, Earth Planet. Sci. Lett., 305, 1, 10.1016/j.epsl.2011.03.010
Fu, 2014, Solar nebula magnetic fields recorded in the Semarkona meteorite, Science, 346, 1089, 10.1126/science.1258022
Gattacceca, 2016, New constraints on the magnetic history of the CV parent body and the solar nebula from the Kaba meteorite, Earth Planet. Sci. Lett., 455, 166, 10.1016/j.epsl.2016.09.008
Huss, 2006, Thermal metamorphism in chondrites, 567
Israelevich, 1994, Induced magnetosphere of comet Halley. 2: Magnetic field and electric currents, J. Geophys. Res., 99, 21
Jia, 2015, Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: induction effect of the planetary conducting core on the global interaction, J. Geophys. Res., 120, 4763, 10.1002/2015JA021143
Jin, 2011, A global two-temperature corona and inner heliosphere model: a comprehensive validation study, Astrophys. J., 745, 1
Kallio, 1998, Magnetic field near Venus – a comparison between Pioneer Venus Orbiter magnetic field observations and an MHD simulation, J. Geophys. Res., 103, 4723, 10.1029/97JA02862
Kataoka, 2015, Millimeter-wave polarization of protoplanetary disks due to dust scattering, Astrophys. J., 809, 78, 10.1088/0004-637X/809/1/78
Kiguchi, 1998, Wind from T Tauri stars, Publ. Astron. Soc. Jpn., 50, 587, 10.1093/pasj/50.6.587
King
Kippenhahn, 2012
Kivelson, 1995, 586
Klein, B.Z., Weiss, B.P., Carporzen, L., 2014. More evidence for a partially differentiated CV chondrite parent body from paleomagnetic studies of ALH 84028 and ALH 85006. Abstract GP51B-3736 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15–19 Dec.
Lindkvist, 2017, Ceres interaction with the solar wind, Geophys. Res. Lett., 44, 2070, 10.1002/2016GL072375
Mamajek, 2009, Initial conditions of planet formation: lifetimes of primordial disks, vol. 1158, 3
Meng, 2015, Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration, Mon. Not. R. Astron. Soc., 454, 3697, 10.1093/mnras/stv2249
Merkin, 2016, Coupling of coronal and heliospheric magnetohydrodynamic models: solution comparisons and verification, Astrophys. J., 831, 23, 10.3847/0004-637X/831/1/23
Metcalfe, 2016, Stellar evidence of a solar dynamo in transition, 28
Muxworthy, 2017, Evidence for an impact-induced magnetic fabric in Allende, and exogenous alternatives to the core dynamo theory for Allende magnetization, Meteorit. Planet. Sci., 1945
Nagashima, 2016, 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites, Geochim. Cosmochim. Acta, 201, 303, 10.1016/j.gca.2016.10.030
Nagata, 1979, Meteorite magnetism and the early solar system magnetic field, Phys. Earth Planet. Inter., 20, 324, 10.1016/0031-9201(79)90055-4
Oran, 2013, A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies, Astrophys. J., 778, 176, 10.1088/0004-637X/778/2/176
Park, 2016, A partially differentiated interior for (1) Ceres deduced from its gravity field and shape, Nature, 537, 515, 10.1038/nature18955
Parker, 1958, Dynamics of the interplanetary gas and magnetic field, Astrophys. J., 128, 664, 10.1086/146579
Sahijpal, 2011, Did the carbonaceous chondrites evolve in the crustal regions of partially differentiated asteroids?, J. Geophys. Res., 116
Scheinberg, 2015, Asteroid differentiation: hydrous and silicate melting and large-scale structure, 533
Shah, 2017, Long-lived magnetism on chondrite parent bodies, Earth Planet. Sci. Lett., 475C, 106, 10.1016/j.epsl.2017.07.035
Stephens, 2014, Spatially resolved magnetic field structure in the disk of a T Tauri star, Nature, 514, 597, 10.1038/nature13850
Tarduno, 2017, Magnetization of CV meteorites in the absence of a parent body core dynamo, 2850
Tóth, 2012, Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870, 10.1016/j.jcp.2011.02.006
Wang, 2017, Lifetime of the solar nebula constrained by meteorite 121 paleomagnetism, Science, 355, 623, 10.1126/science.aaf5043
Weiss, 2013, Differentiated planetesimals and the parent bodies of chondrites, Annu. Rev. Earth Planet. Sci., 41, 529, 10.1146/annurev-earth-040610-133520
Weiss, 2017, A nonmagnetic differentiated early planetary body, Earth Planet. Sci. Lett., 468, 119, 10.1016/j.epsl.2017.03.026
Wood, 2015, Stellar winds in time, vol. 41, 19
Zhang, 2014, Three-dimensional lunar wake reconstructed from ARTEMIS data, J. Geophys. Res. Space Phys., 119, 5220, 10.1002/2014JA020111