Wellfoundedness proofs by means of non-monotonic inductive definitions II: First order operators

Annals of Pure and Applied Logic - Tập 162 - Trang 107-143 - 2010
Toshiyasu Arai1
1Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Tài liệu tham khảo

T. Arai, A system (O(πn),<) of ordinal diagrams, handwritten note, Apr. 1994. Arai, 2000, Ordinal diagrams for recursively Mahlo universes, Arch. Math. Logic, 39, 353, 10.1007/s001530050153 Arai, 2000, Ordinal diagrams for Π3-reflection, J. Symbolic Logic, 65, 1375, 10.2307/2586705 T. Arai, Ordinal diagrams for ΠN-reflection, draft. Arai, 2003, Proof theory for theories of ordinals I: recursively Mahlo ordinals, Ann. Pure Appl. Logic, 122, 1, 10.1016/S0168-0072(03)00020-4 Arai, 2004, Proof theory for theories of ordinals II: Π3-reflection, Ann. Pure Appl. Logic, 129, 39, 10.1016/j.apal.2004.01.001 T. Arai, Proof theory for reflecting ordinals III: ΠN-reflection (submitted for publication). Arai, 2004, Wellfoundedness proofs by means of non-monotonic inductive definitions I: Π20-operators, J. Symbolic Logic, 69, 830, 10.2178/jsl/1096901770 Arai, 2009, Iterating the recursively Mahlo operations, 21 Buchholz, 1975, Normalfunktionen und konstruktive Systeme von Ordinalzahlen, vol. 500, 4 Buchholz, 2000, Review of the paper: A. Setzer, Well-ordering proofs for Martin–Löf type theory, Bull. Symbolic Logic, 6, 478, 10.2307/420979 Richter, 1974, Inductive definitions and reflecting properties of admissible ordinals, 301 Setzer, 1998, Well-ordering proofs for Martin–Löf type theory, Ann. Pure Appl. Logic, 92, 113, 10.1016/S0168-0072(97)00078-X A. Setzer, Review of the paper [8], MR2078925 (2005h:03105).