Well-solvable cases of the QAP with block-structured matrices

Discrete Applied Mathematics - Tập 186 - Trang 56-65 - 2015
Eranda Çela1, Vladimir G. Deineko2, Gerhard J. Woeginger3
1Institut für Optimierung und Diskrete Mathematik, TU Graz, Steyrergasse 30, A-8010 Graz, Austria
2Warwick Business School, The University of Warwick, Coventry CV4 7AL, United Kingdom
3Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

Tài liệu tham khảo

Burkard, 1998, The quadratic assignment problem with a monotone anti-Monge and a symmetric Toeplitz matrix: Easy and hard cases, Math. Program. B, 82, 125, 10.1007/BF01585868 Burkard, 2009 Burkard, 1996, Perspectives of Monge properties in optimization, Discrete Appl. Math., 70, 95, 10.1016/0166-218X(95)00103-X Çela, 1998 Çela, 2012, Another well-solvable case of the QAP: Maximizing the job completion time variance, Oper. Res. Lett., 40, 356, 10.1016/j.orl.2012.06.005 Çela, 2011, The Wiener maximum quadratic assignment problem, Discrete Optim., 8, 411, 10.1016/j.disopt.2011.02.002 Deineko, 1998, A solvable case of the quadratic assignment problem, Oper. Res. Lett., 22, 13, 10.1016/S0167-6377(97)00047-3 Garey, 1979 Koopmans, 1957, Assignment problems and the location of economic activities, Econometrica, 25, 53, 10.2307/1907742 Lengauer, 1990 G. Monge, Mémoires sur la théorie des déblais et des remblais, in: Histoire de l’Academie Royale des Sciences, Année M. DCCLXXXI, avec les Mémoires de Mathématique et de Physique, pour la même Année, Tirés des Registres de cette Académie, Paris, 1781, pp. 666–704. Pferschy, 1994, Monge matrices make maximization manageable, Oper. Res. Lett., 16, 245, 10.1016/0167-6377(94)90037-X Pinkus, 2010 Rudolf, 1995, The cone of Monge matrices: extremal rays and applications, Math. Methods Oper. Res., 42, 161, 10.1007/BF01415751 T.J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’1978), 1978, pp. 216–226.