Tính ổn định của phương trình Kawahara sửa đổi ngẫu nhiên

Springer Science and Business Media LLC - Tập 2020 - Trang 1-10 - 2020
P. Agarwal1,2,3,4, Abd-Allah Hyder5,6, M. Zakarya5,7
1Department of Mathematics, Anand International College of Engineering, Jaipur, India
2Department of Mathematics, Netaji Subhas University of Technology, New Delhi, India
3Department of Mathematics, Harish-Chandra Research Institute (HRI), Allahbad, India
4International Center for Basic and Applied Sciences, Jaipur, India
5Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
6Department of Engineering Mathematics and Physics, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
7Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt

Tóm tắt

Trong bài báo này, chúng tôi xem xét bài toán Cauchy cho phương trình Kawahara sửa đổi ngẫu nhiên, một phương trình sóng nước nông bậc năm. Chúng tôi chứng minh tính ổn định cục bộ cho dữ liệu trong $H^{s}(\mathbb{R})$, với $s\geq -1/4$. Hơn nữa, chúng tôi đạt được sự tồn tại toàn cục cho các nghiệm trong không gian $L^{2}( \mathbb{R})$. Do sự không đối xứng không bằng 0 của hàm pha, một lập luận điểm cố định và phương pháp hạn chế Fourier được đề xuất.

Từ khóa

#phương trình Kawahara #phương trình sóng nước nông #bài toán Cauchy #tính ổn định #nghiệm toàn cục #hàm pha #phương pháp hạn chế Fourier

Tài liệu tham khảo

Ponce, G.: Lax pairs and higher order models for water waves. J. Differ. Equ. 102, 360–381 (1993) Bourgain, J.: Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: the KdV equation. Geom. Funct. Anal. 2, 107–156, 209–262 (1993) Bona, J.L., Smith, R.S.: A model for the two-ways propagation of water waves in a channel. Math. Proc. Camb. Philos. Soc. 79, 167–182 (1976) Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972) Kichenassamy, S., Olver, P.J.: Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. SIAM J. Math. Anal. 23, 1141–1166 (1992) Akylas, T.R.: On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455–466 (1984) Wu, T.Y.: Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 75–99 (1987) Ghany, H.A., Hyder, A.: White noise functional solutions for the Wick-type two-dimensional stochastic Zakharov–Kuznetsov equations. Int. Rev. Phys. 6, 153–157 (2012) Ghany, H.A., Okb El Bab, A.S., Zabal, A.M., Hyder, A.: The fractional coupled KdV equations: exact solutions and white noise functional approach. Chin. Phys. B 22, 080501 (2013) Ghany, H.A., Hyder, A.: Exact solutions for the Wick-type stochastic time-fractional KdV equations. Kuwait J. Sci. 41, 75–84 (2014) Ghany, H.A., Hyder, A.: Abundant solutions of Wick-type stochastic fractional 2D KdV equations. Chin. Phys. B 23, 0605031 (2014) Ghany, H.A., Elagan, S.K., Hyder, A.: Exact travelling wave solutions for stochastic fractional Hirota–Satsuma coupled KdV equations. Chin. J. Phys. 53, 1–14 (2015) Ghany, H.A., Hyder, A., Zakarya, M.: Non-Gaussian white noise functional solutions of χ-Wick-type stochastic KdV equations. Appl. Math. Inf. Sci. 11, 915–924 (2017) Hyder, A., Zakarya, M.: Non-Gaussian Wick calculus based on hypercomplex systems. Int. J. Pure Appl. Math. 109, 539–556 (2016) Hyder, A., Zakarya, M.: The well-posedness of stochastic Kawahara equation: fixed point argument and Fourier restriction method. J. Egypt. Math. Soc. 27, 1–10 (2019) Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992) Huo, Z.: The Cauchy problem for the fifth-order shallow water equation. Acta Math. Appl. Sin. Engl. Ser. 21, 441–454 (2005) Jia, Y., Huo, Z.: Well-posedness for the fifth-order shallow water equations. J. Differ. Equ. 246, 2448–2467 (2009) Tao, S.P., Cui, S.B.: Local and global existence of solutions to initial value problems of nonlinear Kaup–Kupershmidt equations. Acta Math. Sin. Engl. Ser. 21, 881–892 (2005) Zhao, X.Q., Gu, S.M.: Local solvability of Cauchy problem for Kaup–Kupershmidt equation. J. Math. Res. Exposition 30, 543–551 (2010) Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9, 573–603 (1996) de Bouard, A., Debussche, A.: On the stochastic Korteweg–de Vries equation. J. Funct. Anal. 154, 215–251 (1998) de Bouard, A., Debussche, A.: White noise driven Korteweg–de Vries equation. J. Funct. Anal. 169, 532–558 (1999) Ghany, H.A., Hyder, A.: Local and global well-posedness of stochastic Zakharov–Kuznetsov equation. J. Comput. Anal. Appl. 15, 1332–1343 (2013) Printems, J.: The stochastic Korteweg–de Vries equation in \(L^{2}( \mathbb{R})\). J. Differ. Equ. 153, 338–373 (1999)