Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type

Collectanea Mathematica - Tập 67 - Trang 539-554 - 2015
Loredana Caso1, Roberta D’Ambrosio1, Maria Transirico1
1Department of Mathematics, University of Salerno, Fisciano, Italy

Tóm tắt

In this paper we prove some weighted $$W^{2,2}$$ -a priori bounds for a class of linear, elliptic, second-order, differential operators of Cordes type in certain weighted Sobolev spaces on unbounded open sets $$\varOmega $$ of $$\mathbb {R}^{n},\,n\ge 2$$ . More precisely, we assume that the leading coefficients of our differential operator satisfy the so-called Cordes type condition, which corresponds to uniform ellipticity if $$n=2$$ and implies it if $$n\ge 3$$ , while the lower order terms are in specific Morrey type spaces. Here, our analytic technique mainly makes use of the existence of a topological isomorphism from our weighted Sobolev space, denoted by $$W^{2,2}_s(\varOmega )$$ ( $$s\in \small \mathbb {R}$$ ), whose weight is a suitable function of class $$C^2(\bar{\varOmega })$$ , to the classical Sobolev space $$W^{2,2}(\varOmega )$$ , which allow us to exploit some well-known unweighted a priori estimates. Using the above mentioned $$W^{2,2}_s$$ -a priori bounds, we also deduce some existence and uniqueness results for the related Dirichlet problems in the weighted framework.

Tài liệu tham khảo

Abduragimov, È.I.: The Dirichlet problem for a certain class of second order quasilinear elliptic equations of Cordes type (Russian). Functional analysis, theory of functions and their applications, No. 1 (Russian), 6–13, 1. Dagestan. Gos. Univ., Makhachkala (1974) Adams, R.A.: Compact imbeddings of weighted Sobolev spaces on unbounded domains. J. Differ. Equ. 9, 325–334 (1971) Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) Avantaggiati, A., Troisi, M.: Spazi di Sobolev con peso e problemi ellittici in un angolo III. Ann. Mat. Pura Appl. 99, 1–51 (1974) Canale, A., Di Gironimo, P., Vitolo, A.: Functions with derivatives in spaces of Morrey type and elliptic equations in unbounded domains. Studia Math. 128, 199–218 (1998) Caso, L., D’Ambrosio, R., Monsurrò, S.: Some remarks on spaces of Morrey type. Abstr. Appl. Anal. (2010), Article ID 242079. doi:10.1155/2010/242079 Caso, L., D’Ambrosio, R., Transirico, M.: Weighted a priori bounds for elliptic operators of Cordes type. J. Inequal. Appl. 2015(238) (2015). doi:10.1186/s13660-015-0758-5 Chicco, M.: Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore. Ann. Mat. Pura Appl. 85, 347–356 (1970) Chicco, M.: Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients. Ann. Mat. Pura Appl. 92, 13–23 (1972) Cordes, H.O.: Zero order a priori estimates for solutions of elliptic differential equations. Proc. Symp. Pure Math. 4, 157–166 (1961) D’Ambrosio, R., Sgambati, L., Transirico, M.: Elliptic equations in weighted Sobolev spaces on unbounded domains of the plane. J. Anal. Appl. 8, 103–123 (2010) Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983) Guliyev, A.F., Hassanpour, A.S.: On uniqueness of strong solution of Dirichlet problem for second order quasilinear elliptic equations with Cordes condition. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 24, 85–92 (2004) Kudrjavcev, L.D.: Direct and inverse imbedding theorems. Applications to the solution of elliptic equations by variational methods (Russian). Trudy Mat. Inst. Steklov 55, 1–182 (1959) Kufner, A., John, O., Fucík, S.: Function Spaces. Noordhoff International Publishing, Leyden (1977) Mamedov, I.T., Agayeva, R.A.: The first boundary value problem for non-divergent linear second order elliptic equations of Cordes type. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 22, 150–167 (2002) Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wyley-Vch, Berlin (2000) Monsurrò, S., Transirico, M.: A weighted \(W^{2,p}-\) a priori bound for a class of elliptic operators. Int. J. Inequal. Appl. (2013). doi:10.1186/1029-242X-2013-263 Piccinini, L.C.: Proprietà di inclusione e interpolazione tra spazi di Morrey e loro generalizzazione. Sc. Norm. Sup. Pisa Cl. Sci. (1969) Schechter, M.: Principles of Functional Analysis. American Mathematical Society, Providence (2002) Talenti, G.: Sopra una classe di equazioni ellittiche a coefficienti misurabili. Ann. Mat. Pura Appl. 69, 285–304 (1965) Talenti, G.: Equazioni lineari ellittiche in due variabili. Matematiche (Catania) 21, 339–376 (1966) Transirico, M., Troisi, M.: Equazioni ellittiche del secondo ordine di tipo non variazionale in aperti non limitati. Ann. Mat. Pura Appl. 152, 209–226 (1988) Transirico, M., Troisi, M.: Equazioni ellittiche del secondo ordine di tipo Cordes in aperti non limitati di \({\mathbb{R}}^{n}\). Boll. Un. Mat. Ital. 3, 169–184 (1989)