Well-posedness for the Navier–Stokes Equations

Advances in Mathematics - Tập 157 Số 1 - Trang 22-35 - 2001
Herbert Koch1, Daniel Tataru2
1Institut für Angewandte Mathematik, Universität Heidelberg, Heidelberg, Germany
2Department of Mathematics, Northwestern University, Chicago, Illinois

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ben-Artzi, 1994, Global solutions of two-dimensional Navier–Stokes and Euler equations, Arch. Rational Mech. Anal., 128, 329, 10.1007/BF00387712

Brezis, 1994, Remarks on the preceding paper “Global Solutions of Two-Dimensional Navier–Stokes and Euler Equations”, Arch. Rational Mech. Anal., 128, 359, 10.1007/BF00387713

Caffarelli, 1982, Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math., 35, 771, 10.1002/cpa.3160350604

Cannone, 1997, A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoam., 13, 515, 10.4171/RMI/229

Giga, 1989, Navier–Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14, 577, 10.1080/03605308908820621

Giga, 1988, Two-dimensional Navier–Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104, 223, 10.1007/BF00281355

Iftimie, 1999, The resolution of the Navier–Stokes equations in anisotropic spaces, Rev. Mat. Iberoam., 15, 1, 10.4171/RMI/248

Kato, 1984, Strong Lp-solutions of the Navier–Stokes equation in Rm, with applications to weak solutions, Math. Z., 187, 471, 10.1007/BF01174182

Kato, 1988, Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math., 41, 891, 10.1002/cpa.3160410704

Lin, 1998, A new proof of the Caffarelli–Kohn–Nirenberg theorem, Comm. Pure Appl. Math., 51, 241, 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A

Lions, 1998, Unicité des solutions faibles de Navier–Stokes dans LN(Ω), C. R. Acad. Sci. Paris Ser. I Math., 327, 491, 10.1016/S0764-4442(99)80028-7

Planchon, 1996, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in R3, Ann. Inst. Henri Poincare, Anal. Non Lineaire, 13, 319, 10.1016/S0294-1449(16)30107-X

Stein, 1993, 43

Struwe, 1988, On partial regularity results for the Navier–Stokes equations, Comm. Pure Appl. Math., 41, 437, 10.1002/cpa.3160410404

Taylor, 1992, Analysis on Morrey spaces and applications to Navier–Stokes equation, Comm. Partial Differential Equations, 17, 1407, 10.1080/03605309208820892

Wu, 1993, Analytic dependence of Riemann mappings for bounded domains and minimal surfaces, Comm. Pure Appl. Math., 46, 1303, 10.1002/cpa.3160461002