Well-posedness for a class of frictional contact models via mixed variational formulations
Tài liệu tham khảo
Sofonea, 2009
Amdouni, 2012, A stabilized lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies, ESAIM Math. Model. Numer. Anal., 46, 813, 10.1051/m2an/2011072
Hild, 2010, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics, Numer. Math., 115, 101, 10.1007/s00211-009-0273-z
Hüeber, 2007, Efficient algorithms for problems with friction, SIAM J. Sci. Comput., 29, 70, 10.1137/050634141
Matei, 2018, A mixed variational formulation for a class of contact problems in viscoelasticity, Appl. Anal., 97, 1340, 10.1080/00036811.2017.1359569
Adams, 1975
Brézis, 2010
DiBenedetto, 2002
Evans, 2010, vol. 19
Grisvard, 1985
Monk, 2003
Han, 2002
Sofonea, 2012
Chow, 1989, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math., 54, 373, 10.1007/BF01396320
Glowinski, 1975, Sur l’approximation, par éléments finits d’ordre un, et la résolution, par penalisation-dualité d’une classe de problèmes de Dirichlet non linéaires, RAIRO Anal. Numer., 2, 41
Megginson, 1998, 183
Migorski, 2013
Kufner, 1977, Function spaces
Matei, 2018, Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type, Math. Mech. Solids, 23, 308, 10.1177/1081286517718605
Nečas, 2012
Marschall, 1987, The trace of Sobolev-Slobodeckij spaces on Lipschitz domains, Manuscr. Math., 58, 47, 10.1007/BF01169082
Matei, 2014, An existence result for a mixed variational problem arising from contact mechanics, Nonlinear Anal. RWA, 20, 74, 10.1016/j.nonrwa.2014.01.010