Well-posedness for Hardy–Hénon parabolic equations with fractional Brownian noise

Mohamed Majdoub1, Ezzedine Mliki1
1Department of Mathematics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alòs, E., Mazet, O., Nualart, D.: Stochastic calculus with respectto Gaussian processes. Ann. Probab. 29, 766–801 (1999)

Ben Slimene, B., Tayachi, S., Weissler, F.B.: Well-posedness, global existence and large time behavior for Hardy–Hénon parabolic equations. Nonlinear Anal. 152, 116–148 (2017)

Bonaccorsi, S., Tudor, C.: Dissipative stochastic evolution equationsdriven by general Gaussian and non-Gaussian noise. J. Dyn. Differ. Equat. 23, 791–816 (2011)

Brezis, H., Casenave, T.: A nonlinear heat equation with singular initial data. Journ. d’anal. math 68, 73–90 (1996)

Brzezniak, Z., Neerven, J., Salopek, D.: Stochastic evolution equa-tions driven by Liouville fractional Brownian motion. Czechoslovak Math. J. 62, 1–27 (2012)

Clarke, J., Olivera, C.: Local $$L^p-$$ Solution for Semilinear Heat Equation with Fractional Noise. arXiv: 1902.06084

Coupek, P., Maslowski, B.: Stochastic evolution equations with Volterra noise. Stochast. Process. Appl. 127, 877–900 (2017)

Coupek, P., Maslowski, B., Ondrejat, M.: $$L^p-$$valued stochasticconvolution integral driven by Volterra noise. Stoch. Dyn. 18, 1850048 (2018)

Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, 44. Cambridge University Press, Cambridge (1992)

Duncan, T.E., Pasik-Duncan, B., Maslowski, B.: Fractional Brown-ian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2, 225–250 (2002)

Galaktionov, V.A., Pohozaev, S.I.: Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators. Indiana Univ. Math. J. 51, 1321–1338 (2002)

Galaktionov, V.A., Pohozaev, S.I.: Blow-up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal. 53, 453–466 (2003)

Haraux, A., Weissler, F.B.: Non uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 31, 167–189 (1982)

Ibrahim, S., Jrad, R., Majdoub, M., Saanouni, T.: Local well posedness of a 2D semilinear heat equation. Bull. Belg. Math. Soc. Simon Stevin 21, 535–551 (2014)

Ioku, N.: The cauchy problem for heat equations with exponential nonlinearity. J. Differ. Equ. 251, 1172–1194 (2011)

Ioku, N., Ruf, B., Terraneo, E.: Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in $${\mathbb{R}}^2$$. Math. Phys. Anal. Geom. 18, Art. 29, 19 (2015)

Kaplan, S.: On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 16, 305–330 (1963)

Kolmogorov, A.N.: Wienerische Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Doklady). Acad. URSS (N.S.) 26, 115–118 (1940)

Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $${\cal{P}}u_t=-{{\cal{A}}}u+{{\cal{F}}}(u)$$. Arch. Rational Mech. Anal. 51, 371–386 (1973)

Majdoub, M., Otsmane, S., Tayachi, S.: Local well-posedness and global existence for the Biharmonic heat equation with exponential nonlinearity. Adv. Differ. Equ. 23, 489–522 (2018)

Majdoub, M., Tayachi, S.: Well-posedness, global existence and decay estimates for the heat equation with general power-exponential nonlinearities. In: Proceedings of the International Congress on of Mathematics, Rio de Janeiro, 2, 2379–2404 (2018)

Majdoub, M., Tayachi, S.: Global existence and decay estimates for the heat equation with exponential nonlinearity. Funkcialaj Ekvacioj (To appear)

Maslowski, B., Schmalfuss, B.: Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stoch. Anal. Appl. 22, 1577–1607 (2004)

Miao, C., Zhang, B.: The Cauchy problem for semilinear parabolic equations in Besov spaces. Houston J. Math. 30, 829–878 (2004)

Nualart, D.: The Malliavin calculus and related topics, 2nd Ed. Probability and Its Application (New York). Springer, Berlin (2006)

Pucci, P., Serrin, J.: Global nonexistence for abstract evolution equations with positive initial energy. J. Differ. Equ. 150, 203–214 (1998)

Quittner, P., Souplet, P.: Superlinear Parabolic Problems, xii+584. Birkhäuser Verlag, Basel (2007)

Ribaud, F.: Cauchy problem for semilinear parabolic equations with initial data in $$H^s_p({ R}^n)$$ spaces. Rev. Mat. Iberoamericana 14, 1–46 (1998)

Ruf, B., Terraneo, E.: The Cauchy problem for a semilinear heat equation with singular initial data, Evolution equations, semigroups and functional analysis (Milano, 2000). In: Programming Nonlinear Differential Equations Applications, 295–309. Birkhäuser, Basel (2002)

Sanz-Sole, M., Vuillermot, P.-A.: Mild solutions for a class of fractional SPDEs and their sample paths. J. Evol. Equ. 9, 235–265 (2009)

Tayachi, S.: Uniqueness and non-uniqueness of solutions for critical Hardy–Hénon parabolic equations. J. Math. Anal. Appl. 488, 123976 (2020)

Weissler, F.B.: Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32, 277–296 (1979)

Weissler, F.B.: Local existence and nonexistence for semilinear parabolic equations in $$L^{p}$$. Indiana Univ. Math. J. 29, 79–102 (1980)

Weissler, F.B.: Existence and nonexistence of global solutions for a semilinear heat equation. Israel J. Math. 38, 29–40 (1981)