Well-posedness and stability of solutions for the 3-D generalized micropolar system in Fourier–Besov–Morrey spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
de Almeida, M.F., Ferreira, L.C.F., Lima, L.S.M.: Uniform global well-posedness of the NavierStokes–Coriolis system in a new critical space. Math. Z. 287(3–4), 735–750 (2017)
Aurazo-Alvarez, L.L., Ferreira, L.C.F.: Global well-posedness for the fractional Boussinesq–Coriolis system with stratification in a framework of Fourier–Besov type. SN Partial Differ. Equ. Appl. 2(62), 18 (2021)
Azanzal, A., Allalou, C., Abbassi, A.: Well-posedness and analyticity for generalized Navier–Stokes equations in critical Fourier–Besov–Morrey spaces. J. Nonlinear Funct. Anal. 2021, 24 (2021)
Azanzal, A., Allalou, C., Melliani, S.: Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier–Besov–Morrey spaces. J. Elliptic Parabol Equ. (2021). https://doi.org/10.1007/s41808-021-00140-x
Azanzal, A., Abbassi, A., Allalou, C.: Existence of solutions for the Debye–Hückel system with low regularity initial data in critical Fourier–Besov–Morrey spaces. Nonlinear Dyn. Syst. Theory 21(4), 367–380 (2021)
Azanzal, A., Allalou, C., Melliani, S.: Well-posedness, analyticity and time decay of the 3D fractional magneto-hydrodynamics equations in critical Fourier–Besov–Morrey spaces with variable exponent. J. Elliptic Parabol Equ. 8(2), 723–742 (2022)
Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252(3), 2698–2724 (2012)
El Baraka, A., Toumlilin, M.: Uniform well-Posedness and stability for fractional Navier–Stokes equations with Coriolis force in critical Fourier–Besov–Morrey spaces. Open J. Math. Anal. 3(1), 70–89 (2019)
Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)
Ferreira, L.C.F., Precioso, J.C.: Existence of solutions for the 3D-micropolar fluid system with initial data in Besov–Morrey spaces. Z. Angew. Math. Phys. 64(6), 1699–1710 (2013)
Ferreira, L.C., Lima, L.S.: Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatsh. Math. 175(4), 491–509 (2014)
Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16(4), 269–315 (1964)
Galdi, G.P., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15, 105–108 (1977)
Giga, Y., Sawada, O.: On regularizing-decay rate estimates for solutions to the Navier–Stokes initial value problem. Nonlinear Anal. 1(2), 549–562 (2003)
Inoue, H., Matsuura, K., Ôtani, M.: Strong solutions of magneto-micropolar fluid equation. Discrete Contin. Dyn. Syst. 2003, 439–448 (2002). (Dynamical systems and differential equations (Wilmington, NC))
Iwabuchi, T., Takada, R.: Global well-posedness and ill-posedness for the Navier–Stokes equations with the Coriolis force in function spaces of Besov type. J. Funct. Anal. 267(5), 1321–1337 (2014)
Kato, T.: Strong $$L^p$$-solutions of the Navier–Stokes equation in $${\mathbb{R} }^m$$, with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)
Kahane, C.: On the spatial analyticity of solutions of the Navier–Stokes equations. Arch Ration. Mech Anal. 33, 386–405 (1969)
Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Bras. Mat. (N.S.) 22(2), 127–155 (1992)
Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)
Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19(5–6), 959–1014 (1994)
Lukaszewicz, G.: On nonstationary flows of asymmetric fluids. Rend. Accad. Naz. Delle Sci. XL Ser. V Mem. Mat. 12, 83–97 (1988)
Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78. Birkhäauser Verlag, Basel (1983)
Yamazaki, M.: The Navier–Stokes equations in the weak-Ln space with time-dependent external force. Math. Ann. 317(4), 635–675 (2000)
Zhu, W., Zhao, J.: Existence and regularizing rate estimates of solutions to the 3-D generalized micropolar system in Fourier–Besov spaces. Math. Methods Appl. Sci. 41(4), 1703–1722 (2018)