Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg–Landau equation

Journal de Mathématiques Pures et Appliquées - Tập 92 - Trang 18-51 - 2009
Zhaohui Huo1,2, Yueling Jia3
1Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China
2Department of Mathematics, City University of Hong Kong, Hong Kong, PR China
3Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088, PR China

Tài liệu tham khảo

Brand, 1989, Interaction of localized solutions for subcritical bifurcations, Phys. Rev. Lett., 63, 2801, 10.1103/PhysRevLett.63.2801 Bourgain, 1993, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equation, Part II: The KdV equation, Geom. Funct. Anal., 2, 107, 10.1007/BF01896020 Colliander, 2002, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34, 64, 10.1137/S0036141001394541 Deissler, 1988, Generation of counterpropagating nonlinear interacting traveling waves by localized noise, Phys. Lett. A, 130, 2801, 10.1016/0375-9601(88)90613-5 Duan, 1994, On the Cauchy problem of a generalized Ginzburg–Landau equation, Nonlinear Anal., 22, 1033, 10.1016/0362-546X(94)90065-5 Guo, 1991, On smooth solutions to the initial value problem for the mixed nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 119, 31, 10.1017/S0308210500028298 Kaup, 1978, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798, 10.1063/1.523737 Kenig, 1993, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1, 10.1215/S0012-7094-93-07101-3 Kenig, 1996, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9, 573, 10.1090/S0894-0347-96-00200-7 Kundu, 1984, Laudau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., 25, 3433, 10.1063/1.526113 Molinet, 2001, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50, 1745, 10.1512/iumj.2001.50.2135 Molinet, 2002, On the low regularity of the Korteweg–de Vries–Burgers equation, Internat. Math. Res. Notices, 2002, 1979, 10.1155/S1073792802112104 Mjolhus, 1989, Nonlinear Alfvén waves and DNLS equation: Oblique aspects, Phys. Scripta, 40, 227, 10.1088/0031-8949/40/2/013 Ozawa, 1996, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45, 137, 10.1512/iumj.1996.45.1962 Wang, 2003, The Cauchy problem for critical and subcritical semilinear parabolic equations in Lr (II). Initial data in critical Sobolev spaces H−s,r, Nonlinear Anal., 83, 851 Wang, 2004, The inviscid limit of the derivative complex Ginzburg–Landau equation, J. Math. Pures Appl., 83, 477, 10.1016/j.matpur.2003.11.002 Takaoka, 1999, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4, 561, 10.57262/ade/1366031032 Takaoka, 2001, Global well-posedness for Schrödinger equation with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differential Equations, 42, 1 Tao, 2001, Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equation, Amer. J. Math., 123, 839, 10.1353/ajm.2001.0035