Well-posedness and inviscid limit behavior of solution for the generalized 1D Ginzburg–Landau equation
Tài liệu tham khảo
Brand, 1989, Interaction of localized solutions for subcritical bifurcations, Phys. Rev. Lett., 63, 2801, 10.1103/PhysRevLett.63.2801
Bourgain, 1993, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I: Schrödinger equation, Part II: The KdV equation, Geom. Funct. Anal., 2, 107, 10.1007/BF01896020
Colliander, 2002, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 34, 64, 10.1137/S0036141001394541
Deissler, 1988, Generation of counterpropagating nonlinear interacting traveling waves by localized noise, Phys. Lett. A, 130, 2801, 10.1016/0375-9601(88)90613-5
Duan, 1994, On the Cauchy problem of a generalized Ginzburg–Landau equation, Nonlinear Anal., 22, 1033, 10.1016/0362-546X(94)90065-5
Guo, 1991, On smooth solutions to the initial value problem for the mixed nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A, 119, 31, 10.1017/S0308210500028298
Kaup, 1978, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 798, 10.1063/1.523737
Kenig, 1993, The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1, 10.1215/S0012-7094-93-07101-3
Kenig, 1996, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9, 573, 10.1090/S0894-0347-96-00200-7
Kundu, 1984, Laudau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations, J. Math. Phys., 25, 3433, 10.1063/1.526113
Molinet, 2001, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50, 1745, 10.1512/iumj.2001.50.2135
Molinet, 2002, On the low regularity of the Korteweg–de Vries–Burgers equation, Internat. Math. Res. Notices, 2002, 1979, 10.1155/S1073792802112104
Mjolhus, 1989, Nonlinear Alfvén waves and DNLS equation: Oblique aspects, Phys. Scripta, 40, 227, 10.1088/0031-8949/40/2/013
Ozawa, 1996, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45, 137, 10.1512/iumj.1996.45.1962
Wang, 2003, The Cauchy problem for critical and subcritical semilinear parabolic equations in Lr (II). Initial data in critical Sobolev spaces H−s,r, Nonlinear Anal., 83, 851
Wang, 2004, The inviscid limit of the derivative complex Ginzburg–Landau equation, J. Math. Pures Appl., 83, 477, 10.1016/j.matpur.2003.11.002
Takaoka, 1999, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations, 4, 561, 10.57262/ade/1366031032
Takaoka, 2001, Global well-posedness for Schrödinger equation with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differential Equations, 42, 1
Tao, 2001, Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equation, Amer. J. Math., 123, 839, 10.1353/ajm.2001.0035