Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)
Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)
Fan, L., Liu, S., Gao, S.: Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279, 276–289 (2003)
Fang, C., Czuprynski, K., Han, W., Cheng, X.L., Dai, X.: Finite element method for a stationary Stokes hemivariational inequality with slip boundary condition. IMA J. Numer. Anal. 40, 2696–2716 (2020)
Fang, C., Han, W.: Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete Contin. Dyn. Syst. 36, 5369–5386 (2016)
Fang, C., Han, W., Migórski, S., Sofonea, M.: A class of hemivariational inequalities for nonstationary Navier-Stokes equations. Nonlinear Anal., Real World Appl. 31, 257–276 (2016)
Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)
Han, W.: Minimization principles for elliptic hemivariational inequalities. Nonlinear Anal., Real World Appl. 54, article number 103114 (2020)
Han, W.: A revisit of elliptic variational-hemivariational inequalities. Numer. Funct. Anal. Optim. 42, 371–395 (2021)
Han, W., Czuprynski, K., Jing, F.: Mixed finite element method for a hemivariational inequality of stationary Navier-Stokes equations. J. Sci. Comput. 89, article number 8 (2021)
Han, W., Sofonea, M.: Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numer. 28, 175–286 (2019)
Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Kluwer Academic, Boston (1999)
Lamb, H.: On the conditions for steady motion of a fluid. Proc. Lond. Math. Soc. s1-9(1), 91–93 (1877)
Ling, M., Han, W.: Minimization principle in study of a Stokes hemivariational inequality. Appl. Math. Lett. 121, article number 107401 (2021)
Ling, M., Wang, F., Han, W.: The nonconforming virtual element method for a stationary Stokes hemivariational inequality with slip boundary condition. J. Sci. Comput. 85, article number 56 (2020)
Migórski, S.: Hemivariational inequalities modeling viscous incompressible fluids. J. Nonlinear Convex Anal. 5, 217–227 (2004)
Migórski, S., Ochal, A.: Hemivariational inequalities for stationary Navier-Stokes equations. J. Math. Anal. Appl. 306, 197–217 (2005)
Migórski, S., Ochal, A.: Navier-Stokes problems modeled by evolution hemivariational inequalities. Discrete Contin. Dyn. Syst. 2007, 731–740 (2007)
Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)
Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Dekker, New York (1995)
Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)
Sofonea, M., Migórski, S.: Variational-Hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman & Hall, Boca Raton (2018)