Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost

Springer Science and Business Media LLC - Tập 155 - Trang 1-12 - 2019
Sophie Maire1, Philippe Thalmann1, Frank Vöhringer1,2
1Laboratory of Environmental and Urban Economics (LEURE), Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Econability, Mühlethurnen, Switzerland

Tóm tắt

This paper is a contribution to assessing the Swiss energy transition, with an emphasis on the consequences of decommissioning the nuclear power plants for the electricity market and the whole economy. We expect that increased renewable generation and demand-side policies of the type already envisioned will not suffice to close the supply gap, so that Switzerland will have to rely on more imports of electricity, moving away from the export surpluses realized almost every year since 1910. As this reference scenario is contrary to desired energy security, a policy scenario is proposed in which net electricity trade is constrained to balance over the year and the supply gap is closed by relaxing the existing restrictions on gas-fired power plants. One constraint replaces another one, so that the impacts are not obvious. Furthermore, the prices of electricity and natural gas evolve quite differently through time and depend on climate and energy policy. We use a modeling framework coupling a detailed representation of electricity generation and an encompassing representation of the macro-economy to compare these scenarios in terms of both total system cost and welfare. Both indicators favor the reference scenario without gas-fired power plants in spite of its higher marginal costs for electricity. The welfare loss of the policy scenario is small, though, much smaller than the increase in total system cost. This shows that a coupled bottom-up top-down modeling framework assessing the welfare effect of policies can yield very different results from those of an energy system model assessing their impact on total system cost.

Tài liệu tham khảo

Armington, P. S. (1969). A theory of demand for products distinguished by place of production. International Monetary Fund, 16(1), 159–178. Böhringer, C., & Rutherford, T. (2009). Integrated assessment of energy policies: Decomposing top-down and bottom-up. Journal of Economic Dynamics and Control, 33(9), 1648–1661. Böhringer, C., Wickart, M., & Müller, A. (2003). Economic impacts of a premature nuclear phase-out in Switzerland: An applied general equilibrium analysis. Swiss Journal of Economics and Statistics, 139(4), 461–505. Bretschger, L., & Zhang, L. (2017). Nuclear phase-out under stringent climate policies: A dynamic macroeconomic analysis. The Energy Journal, 38(1), 167–194. https://doi.org/10.5547/01956574.38.1.lbre. Drouet, L., Haurie, A., Labriet, M., Thalmann, P., Vielle, M., & Viguier, L. (2005). A coupled bottom-up/top-down model for GHG abatement scenarios in the Swiss housing sector. In R. Loulou, Waaub, J.P., & Zaccour, G. (Eds), Energy and Environment (pp. 27–61). Boston: Springer. doi.org/ https://doi.org/10.1007/0-387-25352-1_2. Ecoplan. (2012). Energiestrategie 2050 - Volkswirtschaftliche Auswirkungen. Technical report. Swiss Federal Office of Energy. Fortes, P., Pereira, R., Pereira, A., & Seixas, J. (2014). Integrated technological-economic modeling platform for energy and climate policy analysis. Energy, 73, 716-730. doi.org/ https://doi.org/10.1016/j.energy.2014.06.075. Hageman, L. A., & Young, D. M. (1981). Applied iterative methods. New York: Academic Press INC. Hoffman, K. C., & Jorgenson, D. W. (1977). Economic and technological models for evaluation of energy policy. The Bell Journal of Economics, 8(2), 444–466. International Energy Agency. (2010). World energy outlook 2010. Paris: International Energy Agency (IEA). Jordan, A., Huitema, D., Van Asselt, H., Rayner, T., & Berkhout, F. (2010). Climate change policy in the European Union: Confronting the dilemmas of mitigation and adaptation. Cambridge: Cambridge University Press. Kannan, R., & Turton, H. (2011). Documentation on the development of the Swiss TIMES electricity model (STEM-E). Technical Report 11. Paul Scherrer Institute. Labriet, M., Drouet, L., Vielle, M., Haurie, A., Kanudia, A., & Loulou, R. (2010). Coupled bottom-up and top-down modelling to investigate cooperative climate policies. Les Cahiers du GERAD G-2010-30. Loulou, R., Goldstein, G., Remne, U., Kanudia, A., & Lehtila, A. (2005). Documentation for the TIMES model. Technical report. Energy Technology Systems Analysis Programme (ETSAP). Maire, S. (2016). Coupled energy economic model framework for analyzing Swiss electricity markets in changing policy environments. Ph.D. thesis. Ecole Polytechnique Fédérale de Lausanne (EPFL). Maire, S., Pattupara, R., Kannan, R., Vielle, M., & Vöhringer, F. (2015). Electricity markets and trade in Switzerland and its neighbouring countries (ELECTRA) - Building a coupled techno-economic modeling framework. Technical report. Swiss Federal Office of Energy. Maire, S., Vöhringer, F., & Thalmann, P. (2015). Linking electricity prices and costs in bottom-up top-down coupling under changing market environments. In EPFL Working Paper Series in Environmental and Urban Economics 2015-1. Ecole Polytechnique Fédérale de Lausanne. Martinsen, T. (2011). Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models. Energy Policy, 39(6), 3327–3336. Pattupara, R. (2016). Long term evolution of the Swiss electricity system under a European electricity market. Ph.D. thesis. ETH Zurich. Pattupara, R., & Kannan, R. (2016). Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario. Applied Energy, 172, 152–168. Prognos. (2012). Die Energieperspektiven für die Schweiz bis 2050. Energienachfrage und Elektrizitätsangebot in der Schweiz 2000-2050. Ergebnisse der Modellrechnungen für das Energiesystem. Technical report. Swiss Federal Office of Energy. Rausch, S., & Mowers, M. (2014). Distributional and efficiency impacts of clean and renewable energy standards for electricity. Resource and Energy Economics, 36(2), 556–585. Riekkola, A. K., Berg, C., Ahlgren, E. O., & Söderholm, P. (2013). Challenges in soft-linking: The case of EMEC and TIMES-Sweden. Working Paper 133. National Institute of Economic Research. Schäfer, A., & Jacoby, H. D. (2005). Technology detail in a multisector CGE model: Transport under climate policy. Energy Economics, 27(1), 1–24. Swiss Federal Office of Energy. (2012). Potentiel des énergies renouvelables dans la production d’électricité (Rapport du Conseil fédéral à l’attention de l’Assemblée fédérale, selon l’art. 28b, al. 2, de la loi sur l’énergie). Technical report. Swiss Federal Office of Energy. Swiss Federal Office of Energy. (2018). In Swiss Federal Office of Energy (Ed.), Schweizerische Elektrizitätsstatistik 2017 / Statistique suisse de l’électricité 2017. Bern. Vöhringer, F. (2012). Linking the Swiss emissions trading system with the EU ETS: Economic effects of regulatory design alternatives. Swiss Journal of Economics and Statistics, 148(2), 167–196. Weidmann, N., Kannan, R., & Turton, H. (2012). Swiss climate change and nuclear policy: A comparative analysis using an energy system approach and a sectoral electricity model. Swiss Journal of Economics and Statistics, 148(2), 275–316. Wene, C.-O. (1996). Energy-economy analysis: linking the macroeconomic and systems engineering approaches. Energy, 21(9), 809–824.