Weighted norm inequalities for operators of potential type and fractional maximal functions

Eric T. Sawyer1, Richard L. Wheeden2, Shiying Zhao3
1Department of Mathematics, McMaster University, Canada
2Department of Mathematics, Rutgers University, New Brunswick, USA
3Department of Mathematics and Computer Science, University of Missouri – St. Louis, St. Louis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

M.Christ, ?A T(b) theorem with remarks on analytic capacity and the Cauchy integral?, Colloq. Math. 60/61 (1990), 601?628.

R.Coifman and G.Weiss, ?Extensions of Hardy spaces and their use in analysis?, Bull. Amer. Math. Soc. 83 (1977), 569?645.

B.Franchi, C. E.Gutierrez, and R. L.Wheeden, ?Weighted Sobolev-Poincaré inequalities for Grushin type operators?, Comm. P.D.E. 19 (1994), 523?604.

I.Genebashvili, A.Gogatishvili, and V.Kokilashvili, ?Criteria of general weak type inequalities for integral transforms with positive kernels?, Proc. Georgian Acad. Sci. (Math.) 1 (1993), 11?34.

B.Muckenhoupt and R. L.Wheeden, ?Some weighted weak-type inequalities for the Hardy?Littlewood maximal function and the Hilbert transform?, Indiana Univ. Math. J. 26 (1977), 801?816.

E. T.Sawyer, ?A characterization of two weight norm inequalities for fractional and Poisson integrals?, Trans. Amer. Math. Soc. 308 (1988), 533?545.

E. T.Sawyer and R. L.Wheeden, ?Carleson conditions for the Poisson integral?, Indiana Univ. Math. J. 40 (1991), 639?676.

E. T.Sawyer and R. L.Wheeden, ?Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces?, Amer. J. Math. 114 (1992), 813?874.

E. M.Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton N. J., 1970.

J.-O.Strömberg and A.Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., vol. 1381, Springer-Verlag, Berlin and Heidelberg, 1989.

R. L.Wheeden, ?A characterization of some weighted norm inequalities for the fractional maximal function?, Studia Math. 107 (1993), 257?272.