Weighted integrals of Wigner representations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boggiatto P., De Donno G., Oliaro A.: Time–frequency representations of Wigner type and pseudo-differential operators. Trans. Am. Math. Soc. 362(9), 4955–4981 (2010)
Boggiatto P., De Donno G., Oliaro A.: A class of quadratic time–frequency representations based on the short-time Fourier transform. Oper. Theory Adv. Appl. 172, 235–249 (2006)
Boggiatto P., De Donno G., Oliaro A.: Uncertainty principle, positivity and L p -boundedness for generalized spectrograms. J. Math. Anal. Appl. 355(1), 93–112 (2007)
Cohen L.: Time–frequency Analysis. Prentice Hall Signal Proceeding Series, New Jersey (1995)
Gatteschi, L.: Funzioni Speciali, Unione Tipografica Editrice Torinese (1973)
Janssen A.J.A.: Proof of a conjecture on the supports of Wigner distributions. J. Fourier Anal. Appl. 4(6), 723–726 (1998)
Lieb E.H.: Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys. 31(3), 594–599 (1990)
Mohammed, A., Wong, M.W.: Rihaczek transform and pseudo-differential operators. In: Pseudo-Differential Operators: Partial Differential Equations and Time–Frequency Analysis. Fields Institute Communication, vol. 52, pp. 375–382. American Mathematical Society, Providence (2007)
Toft, J.: Hudson’s theorem and rank one operators in Weyl calculus. In: Pseudo-Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol. 164, pp. 153–159. Birkhäuser, Basel (2006)
Wong M.W.: Weyl Transforms. Springer, Berlin (1998)